
Version 2	 CACE4 0.97.x	 Rocky River, NSW AUS

	 	 Utrecht/Bunnik, NL

	 	 6 July 2022

 

ABSTRACT

An introduction of the

Computer Aided

Composition Environment

#4.

A MacOSX 64-bit

application, for using

statistics, A.I. and

Information Retrieval

techniques for creating

Music.

Michèl Koenders,
ing., MMus. PhD.

University of the Arts

Utrecht. Music &

Technology.

Data Analysis by using

Statistics, Machine

Learning and AI for

composing Music.

A CASE FOR

CACE4?

An introduction to CACE4 (#1)

© M. Koenders 2022

INDEX.

Index.	
2

Table of figures	
3

Table of tables	
3

Preface.	
4

Do we need another algorithmic composition environment/program?	
5

But what is CACE4?	
5

CACE4: Software design ideas and applied programming techniques.	
8

MVC paradigm.	
8

COSMOS2.	
9

From concept to a working CACE4 program.	
10

About the CACE4 GUI.	
10

CACE4 Object IO.	
11

Developing a strategy by chaining CACE4 Objects into a process.	
13

CACE4: the use as a computer music composition program.	
16

The world of Artificial Intelligence and Machine Learning: Top down versus bottom Up.	
19

Future developments.	
19

Conclusions.	
20

A Literature list.	
23

Used Literature	
24

Appendix 1 List of all Objects available in CACE4 (0b.97.x).	
25

Appendix 2 CACE4 session at work.	 27

2

TABLE OF FIGURES

 Figure 12. A Processor Object displaying several AI (ART2 NN) and HCT Objects. 28

TABLE OF TABLES

Table 1 Values of milliseconds timing used by tempo MM 120 and time signature 4/4.	 17

Table 2 Table of all 55 CACE4 Objects available in version CACE4 0b.97.x	 25

Figure 1. A CACE4 File Generator Object displaying data from a plain text file.	
7

Figure 2. A simple CACE4 strategy of chained/linked CACE4 Objects. Notice the four interaction
possibilities with the CACE4 Objects: Move-open for moving or editing the selected CACE4 Object.
Connect, Disconnect or Delete are the other three interactions of the CACE4 Objects.	
9

Figure 3. Three CACE4 objects with single and multiple input and output connections.	
11

Figure 4. Example of a CACE4 Processor Object which displays a more elaborated strategy. A
(Brownian) Random is combined with a function, merged together and correlated with a data file.
Then we use several statistical techniques to obtain a new dataset and scale the values in the MIDI
domain. After scaling we annotate it and translate it into the MIDI data which can be ‘send’ to the
score object in a separate Project window: together with the Processor Object where it can be
written into a SMF (type 0).	
13

Figure 5. Example of a CACE4 Informer Object displaying, in colour the Moving Average Convergence/
Divergence (MACD) of the input data-set plotted in black (Numerical Input). The calculated result
(Numerical Output) can be displayed in several ways. As a function or as a scatterplot of the input
data-set (lefthand site). And the calculated output of the MACD can be displayed as a scatterplot in a
quasi 3D setting (righthand sight) as well.	
15

Figure 6. Some of the CACE4 Generator Objects. In total there are 23 different Generator Objects.
See Appendix 1 for a complete list of all available CACE4 Objects: version 0.97.x	
16

Figure 7. The CACE4 Annotator Object with annotated data values for the micro-level.	
17

Figure 8. The CACE4 Scaler Object with linear scaling values. The list values with a yellow background
(right) represent the annotation of the data (left) with a white background.	
18

Figure 9. The CACE4 MIDI Translator Object with translated MIDI values.	
18

Figure 10. The CACE4 strategy setup for the algorithmic composition Scope. NB This has been made
with an earlier version of CACE4 (0d.56.07 - 2016).	
21

Figure 11. A typical CACE4 session of several open windows. The setup shows a Processor window, a
Project window and a CACE4 Score Object.	 27

3

A CASE FOR CACE4?

Author: Michèl Koenders, ing., MMus. PhD. 

version 2

“what I cannot create, I do not understand.” - Richard Feynman. 

 

 

PREFACE.

An introduction of the Computer Aided Composition Environment #4 . A MacOSX application, for 1 2

using statistics and Information Retrieval (IR) and Machine Learning (ML) techniques on data-sets initially

unrelated to Music. These IR techniques can either be ‘simple’ statistical tools like: calculating the mean,

median or correlation of a data-set. But can also be more elaborated data analysing techniques as there

are Hierarchical Cluster Techniques (HCT): k-means(++) or Expectation-Maximisation (EM), and Machine

Learning (ML) techniques as linear prediction and Artificial Neural Networks in this case the Adaptive

Resonance Theory (ART2) can be applied as well. All these techniques are presented to the user of the

CACE4 program as simple boxes, with a simple Graphical User Interface (GUI). They can be linked

(chained) together in a CACE4 Project window to deploy more elaborated strategies, adaptive to specific

needs defined by the user. All these data processing techniques are used for creating note-based output

which for now, can be saved as a Standard MIDI Files (SMF, type 0) .
3

 Version 0b.97.21 of CACE4: July 2022.1

 The choice for MacOSX is obtained by the license for this LISP Integrated Development Environment (IDE) as offered 2

by LispWorks.com. For the development of CACE4 LispWorks has been chosen as the preferred LISP Integrated
Development Environment (IDE). Its extended set of Libraries (Libs) and Graphical User Interface (GUI Libs as CAPI)
made this application possible as it is. See the URL of LispWorks: http://www.lispworks.com for further details about
this LISP version. CACE4 is completely written in the well know dialect of Common Lisp according ANSI standard.

 Standard MIDI Files (SMF for short) is a specific file format for storing MIDI data organised in tracks according to the 3

specifications defined by the MIDI association. URL: https://www.midi.org/specifications/item/standard-midi-files-smf
SMF type 0 is a single track with all of the MIDI data (as program changes and tempo markers). SMF type 1 (multiple
tracks with independent tempo tracks) and Music eXtensible Markup Language (MXML) will be implemented in the
Autumn/Winter of 2022. A first preliminary version of MXML has been implemented in 0b.97.21, but needs much more
attention.

4

https://www.midi.org/specifications/item/standard-midi-files-smf
http://LispWorks.com
http://www.lispworks.com

DO WE NEED ANOTHER ALGORITHMIC COMPOSITION ENVIRONMENT/PROGRAM?

	 In order to answer this question, we have to notice that the technique of music composition and

the design of music composition computer programs are in most cases strongly intertwined . Computer 4

software developing/programming and composing music are both complex processes. Both share logic and

logical processes as sets of abstract rules which are applied as their' common ground. These sets of rules

are either based on processes defined as strict mathematical functions or as musical, mostly (non-)logical

historical rules based Harmony, used by consensus: e.g. Jean Phillip Rameau (Rameau 1722). 

The inner workings of a computer program and the way it represents itself to the user reflects the thought

of the software designer, in our case a composer and to a lesser extent that of the application

programmer. Normally the application programmers’ role is restricted in ‘hammering out’ the source code

and translate the design concepts and issues into a working application . 5

The ideas and concepts of how to compose music and the presentation (Graphical User Interface = GUI)

and behaviour of the software, reflects the original idea or concept of a composer as the principal 6

software designer on the process of creating algorithmic music by using a formal and precise process

description which is translated into procedures and functions (algorithms).
7

By having a certain idea about interacting with the program and taking into account a certain concept

about the way how to compose algorithmic/computer music, we could state that indeed we do need

(many) more composition programs as they just reflect a limited idea about the complex process of

composing music.

BUT WHAT IS CACE4?

As previously stated CACE4 is a data analysing and transforming algorithmic music composition

program in one. The abbreviation stands for Computer Aided Composition Environment version 4, and is

the follow-up of CAC3, a much earlier and simpler attempt in creating such an application. CACE4 has 8

 From a historical perspective, many algorithmic music composition programs have been developed, just to mention a 4

few: Iannis Xenakis: UPIC (see: http://www.centre-iannis-xenakis.org/cix_upic_presentation?lang=en), Gottfried
Michael Koenig: Project 1 & Project 2 (see: http://www.koenigproject.nl/Programmed_Music.pdf), Paul Berg: AC
Toolbox (see: http://www.actoolbox.net) and Rick Taube’s Grace (see: http://commonmusic.sourceforge.net), are some
examples of many more algorithmic compositions programs developed through the years. For a more elaborated list
see: Tim Thomson: http://nosuch.com/tjt/plum.html and Paul Doornbush: http://www.doornbusch.net

 besides the normal coding the finishing of the program has to be done by nitty gritty finalising tweaking; mostly 5

painstaking and certainly a time-consuming process. In case of the CACE4 program we are talking about the cycle of
coding and debugging and is certainly comparable with the error checking of a music score, before printing, publishing
and performing can take place.

 In CACE4 there is only one software designer, other music composition programs could have been created by more 6

than one person.

 An Algorithm is a formal and precise process description mostly used in a computer programming language. (see for 7

more information: https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/v/what-
are-algorithms).

 MacOS 7.x - 8.5, between 1988 - 1993, developed with MCL 4.3.5, created during the authors BA study.8

5

http://www.centre-iannis-xenakis.org/cix_upic_presentation?lang=en
http://www.koenigproject.nl/Programmed_Music.pdf
http://www.actoolbox.net
http://commonmusic.sourceforge.net
http://nosuch.com/tjt/plum.html
http://www.doornbusch.net
https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/v/what-are-algorithms
https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/v/what-are-algorithms

been developed in the computer programming language: List Programming (LISP for short). The way it is, 9

CACE4 is also related to the world of data analysis and statistics as well to the ‘family’ of algorithmic

music composition programs. Explicit knowledge about music can only be found in a few separated

modules or CACE4 Objects as they are called in CACE4. 

Therefore, a closer relation between CACE4 and general data analysis programs can be noticed: the core

focus is on analysing data, by either reading a file or making use of several Generator Objects and 10 11

finding some sort of correlation and structure between the entries. Thus, showing us connectivity and

possible (hidden) structures. 

And that makes CACE4 a kind of Information Retrieval (IR) toolkit suited for analysing almost any text

based data-sets while the other CACE4 Objects are capable of analysing and transforming the data-set for

using it in a music composition context. 

All these different CACE4 Objects can be linked or chained together in a more or less random order, while

the communication between these different Objects is just a single ‘stream’ of numbers . Thus building a 12

strategy to solve a specific approach in data analysis and transforming by using the Translator Objects into

music output.

 LISP is an all-purpose, Computer Programming language originally created for doing lambda calculus (invented by 9

John McCarthy in 1958). “In fact, the original LISP, introduced by John McCarthy in 1960, known as pure LISP, is
completely functional.” (Ghezzi and Jazayeri 1982, 1987, p. 274).

 In case of a CACE4 File Generator Object plain text (.txt) files can be read in. Or with the separate CACE4 Spear 10

(Klingbeil 2009) Partials Text File Object: Spear analysis files. Spear analysis files are DSP description files where after
analysing an Audio file (with a Short Time Fourier Transforms.) pairs of Amplitude and frequency components are
ordered, according their appearance in time (based on the sample rate). For more information see: Spear© created by
Michael Klingbeil, is an Analysis/Synthesis program based on the principles of STFT. See http://www.klingbeil.com/
spear/ for further details about Spear.

 There are several CACE4 Generator Objects. The group is split into Math Generators: with a number of fractal and 11

attractor Generator Objects available for generating data, and File Generators able to read text files (.txt and .doc), SMF
(type 0) and SPEAR analysis files. For a full list of all CACE4 Objects see the appendix, pg. 22.

 There’s one important exception when an Annotator Object is inserted in the chain of strategy. Then, not only the 12

data is transferred to the next CACE4 Object, but also the added annotation of the data is transferred (see the
explanation of the use of a CACE4 Annotation Object: pg. 12).

6

http://www.klingbeil.com/spear/
http://www.klingbeil.com/spear/

Figure 1. A CACE4 File Generator Object displaying data from a plain text file.

7

CACE4: SOFTWARE DESIGN IDEAS AND APPLIED PROGRAMMING TECHNIQUES.

The initial design criteria of CACE4: 

There are four initial goals which acts as major design criteria used for developing the CACE4 application

as there are:

 

1/ As Operating Systems (OS) evolve and change, and the ideas about Music and composition do as well,

the CACE4 algorithmic music composition program as such should be an open-ended software application.

Fully functional as it is, but not, really finished. 

2/ Therefore further development should be done easily with an adaptive predefined modular approach. 

3/ CACE4 should be usable for educational purposes as well, with examples and an explanation of the

specific procedures followed . 13

4/ And its most important initial design goal: it should be capable for use as an algorithmic composition

program.

MVC PARADIGM.

Certain specific software programming models and techniques have been used for developing

CACE4 as an application. As there is the Model View Controller (MVC) paradigm software development 14

technique. It is based on a strict division of the programming code into three software components. First

of all, a (mathematical) description of the specific technique applied as an algorithm build out of

functions and procedure is used for implementing the so-called Model. Secondly the representation of the

data is done in a View or window representation. This can either be a text field with a numerical

representation or in a graph as 2- or 3-dimensional plotted data. 

And thirdly the necessary Controllers are completing this paradigm as there are: menu’s, editable text

fields, sliders and buttons. These are all software components for letting the user interact with the data

and thus actively changing the CACE4 Object behaviour and output. 

Transportability of the source code to other, future (different OS) platforms is incorporated into the design

of the program. This was achieved by using this strict split between code and GUI, according the MVC

paradigm, and doing the LISP coding according ANSI standards as well.
15

 This idea has been incorporated in the GUI of each CACE4 Object as two buttons (title of the button pane: select 13

type of information): info Algo and info GUI. The first one gives a detailed description of the inner workings of the
algorithm used. The latter one explains the GUI of the CACE4 Object. Additionally added two more buttons for
Wikipedia and Wolfram for extra information about the topics on their specific URL’s.

 See for more information about MVC: https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx 14

 ANSI = American National Standards Institute https://www.ansi.org, The LISP programming is done according ANSI 15

X3J13 1994. And can be found at the ANSi site: https://webstore.ansi.org/Standards/INCITS/ansiincits2261994r2004

8

https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx
https://webstore.ansi.org/Standards/INCITS/ansiincits2261994r2004

COSMOS2.

As previously mentioned CACE4 is a computer program with an easy extendable framework. The

use of a framework application design with Object Oriented Programming (OOP) together with a kind of

single stream-based IO (= input/output) for communication between two or more CACE4 Objects gives it a

flexibility that makes it ready for future adaptations. For the communication between all these separated

modules the CACE4 Operating System with the Modular Object Shell # 2 (for short: COSMOS2) has been

developed and implemented and is for now sufficient. It is making use of a set of slots shared by all CACE4

Objects for direct communication. It consists of a unique generated Object-ID number and is stored in 16

either the INPUT-LINK slot or OUTPUT-LINK slot of the CACE4 Object. This linking together is visual

symbolised by connecting the objects with an arrowed line as a representation of the connection and the

direction of the data flow as such (see fig 2, pg. 9).

Figure 2. A simple CACE4 strategy of chained/linked CACE4 Objects. Notice the four interaction possibilities with
the CACE4 Objects: Move-open for moving or editing the selected CACE4 Object. Connect, Disconnect or Delete
are the other three interactions of the CACE4 Objects.

 This unique Object-ID number is created at the moment an CACE4 Object is added to the process window.16

9

FROM CONCEPT TO A WORKING CACE4 PROGRAM.

As previously stated CACE4 was original designed as an open-ended computer program, what is

reflected the way it is constructed according rules and methods belonging to a framework application . 17

This gives way to have a freer and more specific design for every CACE4 Object and to be open ended,

based on the principles of a pre-designed framework which doesn’t have to be finished in order to be fully

functional as an application. More CACE4 Objects can be rather easily added to the existing ones if

necessary. 

This open framework programming technique is obtained by making use of Object Oriented Programming

(OOP) techniques. Making development and adaptation of the application swift and easy. Because CACE4 is

programmed in the computer language LISP it makes use of the Common Lisp Object System (CLOS) as an 18

already incorporated LISP Library (in the LispWorks IDE) to achieve this goal. The CLOS is intertwined with

the Common Application Programming Interface (CAPI) Library (also in the LispWorks IDE) and therefore it

is easy, with an initialise-instance method call and an additional add-views method, to extend basic GUI

classes with extra or altered views and controllers, adapted to the specific needs of every CACE4 Object.

ABOUT THE CACE4 GUI.

The CACE4 Object system GUI has an Object-Oriented Programming Style (OOPS) design for both

the GUI and the underlying calculations and processes (Model) in a Generator, Manipulator, Annotator,

Translator or Informer wrapper class. This wrapper class facilitates two major designs items: one providing

numerical input/output display only and the other one: plotting in a 1D, 2D or 3D space.

Although more elaborated and resulting in more coding, this makes it possible to split the functionality of

the GUI almost completely from the (underlying) functionality of the software. This idea has been used as

a fundamental design approach of the CACE4 program to give every Model which is the underlaying

functionality of a CACE4 Object its optimum GUI. Therefore, fine tuning of the GUI can be done for 19

every single CACE4 Object.

 

 

 A framework application can be defined as an application build out of reusable software components (The application 17

framework). ‘Wrapped’ in these frames (mostly GUI based), objects can easily be embedded into the application
environment as such. See for more details about the topic: http://www1.cse.wustl.edu/~schmidt/CACM-
frameworks.html

 CLOS is an ANSI Standard, Object Oriented Programming language extension for LISP (1994, ANSI X3J13), as 18

described in Object-Oriented Programming in Common Lisp, A Programmer's Guide to CLOS (Keene 1989), and
Understanding CLOS, The Common Lisp Object System (Lawless and Miller 1991).

 This is made possible due to the fact that the design is based on the on-board CAPI GUI classes: provided by the 19

LispWorks IDE combining CAPI with CLOS.

10

http://www1.cse.wustl.edu/~schmidt/CACM-frameworks.html
http://www1.cse.wustl.edu/~schmidt/CACM-frameworks.html

CACE4 OBJECT IO.

As previously stated CACE4 is not based on a specific musical language design, a more common

design approach for an algorithmic music program . To make the communication between CACE4 Objects 20

in the Processor Window possible: COS&MOS2 has been developed. The direct involvement of COS&MOS2 21

in CACE4 can be noticed in the linking (or chaining) of different CACE4 Objects by connecting their input

and output (IO). All CACE4 Objects share this type of IO communication model as a one-dimensional data-

set of rational (single-floats/double-floats or integers) numerical values of any type of length. This rather

simple design concept also offers the possibility to isolate the processing of the data-set to the CACE4

Object itself. Therefore, local data handling (e.g. preparing the data for further manipulation and/or

calculation) can now be achieved according the necessity of the specific process. This concept of

separating the input/output from the data manipulation is fully exploited in the development and the

design of the different CACE4 objects.

CACE4 Objects can have multiple inputs and multiple outputs. The number of IO’s of a CACE4 Object are

only based on the specific process it represents. Most processes have only one input, but a few special

cases exist with more than one, input-stream (see fig 3, page 11).

Figure 3. Three CACE4 objects with single and multiple input and output connections.

After processing the (input) data-set, the now altered data-set is available at the CACE4 Objects output.

In a few special cases several different outputs are available (see fig. 3, pg. 11).

By taking all these different design concepts into account and by making a design based on frames

represented by boxes with input and output connections each box acts as a separate process with its

specific GUI: optimised and well suited for the process it represents. To make future programming and

further development easy; every CACE4 Object GUI is based on either one of two distinct types of GUI

designs embedded in CLOS/CAPI classes. One with a graph pane where IO also can be plotted in several

ways as 1D, 2D or 3D pixel or function plots and as numerical lists of input and output. The other GUI type

is much simpler: it basically has only numerical lists for IO.

 E.g. AthenaCL by Christopher Arazi (2005) and Grace by Rick Taube (see footnote 3).20

 COS&MOS2 stands for CACE Operating System & Modelling and Organising Shell #221

11

CACE4 based on these separate, boxed processes should be useful not only as data analysers and

processors in a musical composition environment but act as educational software as well . The CACE4 22

Objects offers the opportunity to explain certain processes. Initially separated from other areas and to

explain the inner workings to students as isolated and unique processes. E.g. k-means/k-means++ can be

presented as a cluster detection process without the knowledge how to construct a SMF (= Standard MIDI

Files). The latter technique of how to construct these SMFs can be if necessary explained to the students

as a separate topic at a later date.

For using CACE4 as an algorithmic composition program the 55 (and still growing) different CACE4 Objects

offer a large variety of interesting analysing and processing tools. To name just a few: several statistical

processes as mean, median, standard deviation, correlation calculation (Pearson, Spearman and and 3

types of Kendall-tau), histograms and linear regression. Besides these more common statistical tools more

elaborated processes are available as CACE4 Objects as well. For now (version 0b.97.x) Hierarchical

Cluster Techniques and Hierarchical Cluster Analysis (HCT/HCA) as part of Machine Learning techniques

(used Linkage methods: WPGMA ,UPGMA, UPGMC, SL and CL) together with k-means, k-means++, k-23

Nearest Neighbour (k-NN), Expectation Maximisation (EM) and a neural network as ‘bottom up’ AI

process ; the Adaptive Resonance Theory #2 (ART2) (Carpenter and Grossberg 1987), and finally a Fuzzy 24 25

Logic Controller are implemented.

Many other processes as calculation, sorting, filtering, pruning (deleting), merging and scaling

complement the data analysing and processing power of CACE4. For an extended overview of all these

objects and their specific possibilities take a look at the appendix A (pg. 23). These previous Objects can

also be used as tools for data mining: cleaning up the data-set or transforming the input data-set into

certain dimensions necessary for doing our calculus.
26

 The author was (up-to June 2021) a free-lance lecturer of students in Computer Music Software Development, mainly 22

in the area of creating Music software applications with a focus on using AI and MIR techniques (LISP) and to a lesser
extend in Digital Signal Processing (DSP, C/C++). The students were undergraduates in their second year or fourth year
of education and Master students at the University of the Arts, Utrecht the Netherlands.

 WPGMA = Weighted Pair Group Method with Arithmetic Mean, UPGMA = Unweighted Pair Group Method with 23

Arithmetic Mean, UPGMC = Unweighted Pair Group Method with Arithmetic Centroid, SL = Simple Linkage and CL =
Complete Linkage. All bottom-up Hierarchical Cluster Analysis Linkage methods. All these methods are all implemented
in their naive format and don’t make use of optimised algorithms. Therefore calculation of larger data-sets can be time
consuming.

 bottom up AI approach, also connectionist model takes a model of our neural patterns as they have developed in our 24

brains. These networks have no a priori knowledge about, in this case music, but act as a true, although abstract, mirror
of the workings of how brain cells are connected and how they cooperate together in transferring messages in these
networks. See for more information: https://en.wikipedia.org/wiki/Connectionism

 ART2 Neural Network, is a Neural Network based on the use of Adaptive Resonance Theory originally designed and 25

proposed by Carpenter & Grossberg (Carpenter and Grossberg 1987). See for more information: https://
nl.mathworks.com/matlabcentral/fileexchange/54377-art-2-neural-network---machine-monitoring-hybrid-system?
s_tid=gn_loc_drop or https://en.wikipedia.org/wiki/Adaptive_resonance_theory or https://web.archive.org/web/
20120109162743/http://users.visualserver.org/xhudik/art

 In future version of CACE4 a separate data mining Object will be added to deal with the specific features of Data 26

Mining. (e.g. Analysing and pre-processing of the acquired data-set.

12

https://en.wikipedia.org/wiki/Connectionism
https://nl.mathworks.com/matlabcentral/fileexchange/54377-art-2-neural-network---machine-monitoring-hybrid-system?s_tid=gn_loc_drop
https://nl.mathworks.com/matlabcentral/fileexchange/54377-art-2-neural-network---machine-monitoring-hybrid-system?s_tid=gn_loc_drop
https://nl.mathworks.com/matlabcentral/fileexchange/54377-art-2-neural-network---machine-monitoring-hybrid-system?s_tid=gn_loc_drop
https://en.wikipedia.org/wiki/Adaptive_resonance_theory
https://web.archive.org/web/20120109162743/http://users.visualserver.org/xhudik/art
https://web.archive.org/web/20120109162743/http://users.visualserver.org/xhudik/art

There are two slightly different CACE4 Objects; the Annotator and the Translator Objects. With these two

CACE4 Objects it is also possible to first annotate and later use the annotated input to translate it into a

more musical pre-MIDI format. In the present version, not all CACE4 Objects are capable of processing this

annotated data (future versions will add more CACE4 Objects to this list), but 9 can (see the appendix A,

pg. 23). The CACE4 Translator Object must be used as the last CACE4 Object in the chain as part of a

designed strategy (this will be further explained in the next paragraph). Its output can be saved after

processing in a plain Text file or send to the CACE4 Score Object where the translated data can be written

into a file by creating a SMF , type 0.
27

DEVELOPING A STRATEGY BY CHAINING CACE4 OBJECTS INTO A PROCESS.

In order to be able to mix IR techniques with other, statistical aspects of data (as such) and turn

them into Music related data (e.g. for now MIDI and later MXML). It is necessary to use common ground: in

this case Mathematics is preferable above an (abstract) musical language: which could introduce 'false'

connections, by introducing other hierarchies, as defined in a specific language before any IR techniques

are used.

Figure 4. Example of a CACE4 Processor Object which displays a more elaborated strategy. A (Brownian) Random
is combined with a function, merged together and correlated with a data file. Then we use several statistical
techniques to obtain a new dataset and scale the values in the MIDI domain. After scaling we annotate it and
translate it into the MIDI data which can be ‘send’ to the score object in a separate Project window: together
with the Processor Object where it can be written into a SMF (type 0).

 SMF type 2 and Music-XML (MXML) format will be available soon.27

13

 

This concept doesn't free us of the introduction of any music language but the concept as such is

transferred to an isolated CACE4 Object (hence our tandem of CACE4 Annotator & Translator Objects are

such Objects). Data handling is now strictly done according a specific design of the object and its use in a

strategy in a CACE4 Processor Object (see figure 2 and figure 4 for a more elaborated CACE4 strategy

example).

Every CACE4 Object, after modifying or transforming it’s input according its process description is

presenting its output as a single numerical, one dimensional data-set, ready for attachment to other

CACE4 objects in the CACE4 Processor window as part of a desired strategy. The only exceptions to this

approach are the Annotator and Translator Objects, which work in tandem to add extra, by the user

annotated information about the 1-dimensional data-set between the CACE4 Objects. They have no

further influence on the data or further processing as such but are only used to add extra information

about the number in a so-called LISP hash-table construction . All these different boxes can be chained or 28

linked together to form more complex processes in order to analyse and transform the original input data.

Consequently, unique processes can be created by the user. These strategies as chained CACE4 Objects can

be altered and saved to file, and read in at a later stage, for further use.  

 

As an extra data analysing and visualisation Object, the Informer Object in green (see figure 5, page 15) 29

can be attached to any output without altering the data-set of that CACE Object. With the Informer

Object comes a whole range of statistics: e.g. minimum-maximum, mean, median, Moving Average

Convergence/Divergence (MACD), Bollinger Bands, chart plotting, variance, deviation, correlation (three

different types: Pearson (product moment), Spearman (rank-order) and Kendall tau (a, b and c), Linear

Regression and Histograms can be used.

 A LISP hash-table is a special data storage type (just like floats, integers or structures) optimised for storing large 28

amounts of data is a specific format. This LISP hash-table is constructed as a 4-member table, consisting of the
number itself either as an integer, rational, complex, single-float or as a double-float. The other 3 places containing text
as a single string with values on micro-, meso- and macro-level as added by the user. These values will be later on used
by the CACE4 Translator object, as the final object in our sequence of CACE4 objects (strategy chain), to translate the
1-dimensional stream of numerical values into corresponding MIDI/MXML values.

 The Informer Objects are the green coloured objects in figure 4, pg. 13.29

14

Figure 5. Example of a CACE4 Informer Object displaying, in colour the Moving Average Convergence/Divergence
(MACD) of the input data-set plotted in black (Numerical Input). The calculated result (Numerical Output) can be
displayed in several ways. As a function or as a scatterplot of the input data-set (lefthand site). And the
calculated output of the MACD can be displayed as a scatterplot in a quasi 3D setting (righthand sight) as well.

Therefore, each strategy for analysing data by using specific analysis techniques or for creating an

algorithmic composition, can be done in the context of the available CACE4 Objects with all their unique

features. The CACE4 Object order (in the chain of CACE4 Objects) can be altered: new ones can be added

and already existing one’s deleted or moved and reconnected when necessary.

The only other conceptual restrictions are that every strategy chain needs at least one Generator Object

in the beginning. This is a special CACE4 Object with only one output (see fig. 4, pg. 13 and fig. 6, pg. 30

16) and it also needs a CACE4 Translator Object (with only input and no direct output) at the end of this 31

 The CACE4 Generator Objects come in two flavours: as a CACE4 MATH Generator, which represents a fractal, 30

attractor or other function calculation. Or as a CACE4 File Generator which is capable of reading one of these three
formats: a plain text file, a SMF type 0 or a SPEAR analysis text file.

 These Transformer Objects as they are called do have a 'hidden' output. After transforming the data in a pre-MIDI 31

context (start-time pitch velocity and duration) it is possible to send it to the Score OBJ. This specific OBJ does the final
translation of all selected data, with all the necessary MIDI calculations needed (e.g. MIDI time stamping, tempo and if
selected transforming from absolute time to delta time), to turn it into a real SMF type 0.

15

strategy chain. In between all other Manipulators Objects can be used in any order: they have both one or

more inputs and one or more outputs.

Figure 6. Some of the CACE4 Generator Objects. In total there are 23 different Generator Objects. See Appendix
1 for a complete list of all available CACE4 Objects: version 0.97.x  
 

CACE4: THE USE AS A COMPUTER MUSIC COMPOSITION PROGRAM.

	 CACE4 can be used to analyse data-sets only but this is not its major goal and is therefore not 32

recommended. The name of CACE4 points directly to the use of assistance offered in creating 33

algorithmic music compositions. These generated or algorithmic computer compositions can either be pure

electronic works: e.g. by generating MIDI Controller data or MIDI notes for use in any Digital Audio Editor

and MIDI sequencer program , or for use as a starting point for instrumental scores for Music scoring 34

programs as Sibelius and Finale which can be played at a later time by Musicians. The basic method of 35 36

generating musical material is the same. By creating a strategy as previous described we can design our

own algorithmic composition process. In case of an electronic (MIDI) composition generating data for a

MIDI controller and combined with MIDI note values can be sufficient and can be done by using the CACE4

Annotator Object and selecting the right MIDI command for annotating the data on Micro level (see fig 7,

pg. 17).

 Except in some cases where only analyses of certain data-sets is done for MIR . In mathematical data analysis only it 32

is recommended to use the free R-Project: R is a free software environment for statistical computing and graphics. It
compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. URL: https://www.r-project.org

 CACE4 = Computer Aided Composition Environment #4.33

 These files are generated in the CACE4 Score Object as SMF (format 0), and can be read by any Sequencer Editor 34

program: Digital Performer (see: http://www.motu.com) or GarageBand from Apple or Logic Pro X or Music Notation
Software e.g. Finale from makemusic: https://www.finalemusic.com

 See: http://www.avid.com/sibelius for more information.35

 See: https://www.finalemusic.com/products/ for more information.36

16

http://www.motu.com)
https://www.finalemusic.com
https://www.r-project.org
http://www.avid.com/sibelius
https://www.finalemusic.com/products/

Figure 7. The CACE4 Annotator Object with annotated data values for the micro-level.

To generate Scores we have to use the CACE4 Scaler Object (see fig. 8, pg. 18) in order to map (in this

case) linear data values inside the MIDI domain boundaries’ desired. For most data: between [0/1,127] as

there are pitch and velocity. For use in the domain of time we have to stretch the upper limits. Be aware

that milliseconds timing is done in so called delta-timing or inter onset timing in case of the start time

(position) for the note and/or MIDI controller. This timing in milliseconds is also used for calculating the

duration of the note. See table 1 (pg. 17) for values of this timing used by tempo MM 120 and time

signature 4/4 .
37

Table 1. Values of milliseconds timing used by tempo MM 120 and time signature 4/4.

Note durations	 in 1/1000 sec	 rounded msecs.

1/128	 	 15.625	 	 15.6

1/128 dot	 23.4375	 	 23.4

1/64	 	 31.25	 	 31.3

1/64 dot	 46.875	 	 46.9

1/32	 	 62.5	 	 62.5

1/32 dot	 93.75	 	 93.8

1/16	 	 125	 	 125

1/16 dot	 187.5	 	 187.5

1/8	 	 250	 	 250

1/8 dot	 	 375	 	 375

1/4	 	 500	 	 500

1/4 dot	 	 750	 	 750

1/2	 	 1000	 	 1000

1/2 dot	 	 1500	 	 1500

1 (whole)	 	 2000	 	 2000

1 dot	 	 3000	 	 3000

2	 	 4000	 	 4000

3	 	 6000	 	 6000

4	 	 8000	 	 8000

5	 	 10000	 	 10000

 This is a linear process but other tempi can be easily calculated: e.g. for tempo 60 all note duration values need to be 37

multiplied by 2 to obtain the correct durations. Tables are provided in the CACE4 program: menu item: CACE4
References select: CACE4 Note durations Range table.

17

Figure 8. The CACE4 Scaler Object with linear scaling values. The list values with a yellow background (right)
represent the annotation of the data (left) with a white background.

Figure 9. The CACE4 MIDI Translator Object with translated MIDI values. 

18

Again take a look at figure 4 (pg. 13) for a CACE4 Strategy setup for a small music composition strategy.

Note that at the end of our chain of strategy we have to add a CACE4 Translator Object (as presented in

fig. 9, pg. 18). This CACE4 Object is used to make a final translation of the data to MIDI/MXML and send it

to the CACE4 Score Object or save it as a column of text in a text-file (.txt).

THE WORLD OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: TOP DOWN
VERSUS BOTTOM UP.

	 Bottom-up and top-down are the two major approaches of quantifying data in the domain of

Artificial Intelligence and Machine Learning. These two-complementary processes are both needed to

obtain a more thorough valuation of the used data-set. First of all let’s have a look at the so-called

bottom-up approach.

The world of data and AI or better: the qualification of data without ‘a priori’ knowledge about the data 38

is the domain where the use of Artificial Neural Networks can be of great help. But remember: they do not

measure or obtain knowledge. They only can quantify and categorise data-sets as numbers represented by

float or integer values as a vector into groups! Although sometimes not clear how these networks exactly

work they can be seen as ‘major’ cognitive problem solvers, as stated by Daniel Dennit: “The advent of

“deep learning” and Bayesian methods has been viewed with mixed emotions by many in cognitive

science, Why? The fact that these new cognitive fabrics work so well is astonishing and delightful, and

their applications are going to sweep the world, but … although they will give us great answers to hard

questions like never before, they won’t be able to tell us why.” (Dennit 2017, pg. 316).

The other method used is top-down where rule-based knowledge is used in order to classify data. One of

the well-known approaches is Experiments in Music Intelligence (EMI) from the American Composer David

Cope . You can listen to one of his experiments (Vivaldi) at: https://www.youtube.com/watch?39

v=2kuY3BrmTfQ See the Literature list (computer music books) as well, with three books by David Cope. 

CACE4 has besides the Annotator and Translator Objects no top-down approaches of qualifying data at the

moment, but plans for implementing such top-down Objects are in the pipeline. 

FUTURE DEVELOPMENTS.

Although intentionally not designed for doing DSP, CACE4 at a later point can be incorporated with

DSP processes as well. This is very well possible with the use of the Foreign Language Interface (FLI)

Library already available in the LispWorks IDE. With the use of this Library blocks of compiled C-code can

be incorporated into the CACE4 program. For making use of (analysed) Audio with the use of a Short Time

Fourier Transform (STFT); SPEAR files can be used as input next to Text-files and SMF.

 Without ‘a priori’; means without any initial or previous knowledge and is a well-known term of the domain of 38

Philosophy. See: https://en.wikipedia.org/wiki/A_priori_and_a_posteriori

 For more information see: http://www.computerhistory.org/atchm/algorithmic-music-david-cope-and-emi/ 39

19

https://en.wikipedia.org/wiki/A_priori_and_a_posteriori
http://www.computerhistory.org/atchm/algorithmic-music-david-cope-and-emi/
https://www.youtube.com/watch?v=2kuY3BrmTfQ
https://www.youtube.com/watch?v=2kuY3BrmTfQ

As previously stated by isolating every process into a separated CACE4 Object with a unique internal

design gives the program his extending ability and flexibility for future extension and adaptations . Top-40

down AI, knowledge based will be implemented as frame-based techniques as suggested by Winston. See:

https://www.csee.umbc.edu/courses/771/papers/nebel.html for more about this AI technique. 

 

Further developments will focus on graphics with a true 3D plot extending into multiple dimensional

views, with the possibility of rotation and zoom in/out. Further development of the Annotator Object with

a MXML implementation and an implementation of the SMF format 1 are also on the todo list.

CONCLUSIONS.

Although CACE4 has its limitations (more different input file formats need to be added to the

program), but with a few extra points of attention it can be well used for the tasks it originally was

conceived for.

Music Information Retrieval 

As it is now (version CACE4 00b.97.x), CACE4 functions with its limitations as expected. The most

important limitation is not the way the program works, but the restrictions on the formats it can read and

write (IO). Although bugs do exist, they are tracked and will be eliminated in versions to come. - Most of

them are not really bugs but are ‘lose ends’ of software coding which needs extra attention with some

extra coding . Therefore, these limitations should be lifted as soon as possible in order to give the CACE4 41

program the necessary addition to access and use the sources of M(usic)XML as a professional program

centred around calculations for score writing. Especially if we want to take further music notation details

into account. 

As previously stated DSP Algorithms have been omitted in this version of CACE4. But routines as STFT could

easily be added to the package of CACE4. For now the CACE4 SPEAR Object does its job adequately the

way CACE4 works, but it would add many more opportunities for the analysis possibilities of CACE4.

Education 

For educational purposes, it still has to be tested on a larger group of students. Before this can take place

 The total size for the data-sets used is only limited by the size of RAM available (in the older versions of LispWorks (a 40

32bit version); CACE4 therefore is limited to the upper limit of 2 GB of RAM, which can be reached in an intensive data
session, when a lot of calculations and data is involved. The latest version of CACE4 is created with LispWorks 8.x the
professional (64bit) version. Therefore, in the latest version of CACE4 (64bit version) these limitations are omitted (16 GB
of RAM can be addressed).

 “Bugs” as they are called, can be split in at least three different types: first of all, the “typo” (or syntactic) error, these 41

can be found by the compiler/interpreter and are rather easy to eliminate. Then we have the “thinko” error: a more
difficult one to spot. While not been seen by the compiler/interpreter it is more comparable with a semantic error, or a
construction (read design) error in the source code (see for more explanation on these two errors type’s: Dennit 2017,
pg. 229). A third ‘error, but related to the “thinko” can be spotted as a “loose end” error. In first instance a rather good
idea of how to construct the code, but by lack of time never really finished: the code as it is, is just not working the way
it should be. Easy to notice but hard to get rid of: what was the original idea behind this code? Take a look at https://
stackoverflow.com/questions/7849684/what-is-semantic-errors-in-c-language-give-some-examples for addressing
errors in the computer language C/C++: syntactic, semantic and design error.

20

https://stackoverflow.com/questions/7849684/what-is-semantic-errors-in-c-language-give-some-examples
https://stackoverflow.com/questions/7849684/what-is-semantic-errors-in-c-language-give-some-examples
https://www.csee.umbc.edu/courses/771/papers/nebel.html

additional information about the algorithms used and the way the GUI is working should be added to all

Objects as text-info. For now new text has been added and ART2 makes use of an excerpt of the thesis 42

of the author: “From Music Information Retrieval (MIR) to Information Retrieval for Music (IRM).”(Koenders

2016) will be used as long as they are adequate in covering the topics as they are presented.

Algorithmic composition: 

Up to now (summer 2022) several compositions have been created with the use of CACE4. Some were 43

created with initially generated data-sets from fractal, attractor and random calculations and others were

generated from data files found on the internet.

In the case of ‘Scope’ a composition for 2 spring drums and 6 ceramic tiles the strategy of "imitation” of

generated material (Brownian movements, Random Clouds and Bifurcation) by using the CACE4 MATH-

Generator Object STAPS has been used: thus, creating imitations and variations of our generated data-set.

In this particular case has proven to be very valuable indeed .
44

 

Figure 10. The CACE4 strategy setup for the algorithmic composition Scope. NB This has been made with an
earlier version of CACE4 (0d.56.07 - 2016).

 Approx. 95 % of all CACE4 Objects have additional information about the GUI and of the algorithms used. The latter 42

one needs some fine tuning.

 List of compositions: For small ensemble: ‘Zwicky’s Box’ (2015). And for solo instrument: ‘Argos Pansonos’ (2013) for 43

piano and ‘Scope’ (2016) for spring drums and ceramic tiles. It is also used to create MIDI controller data and notes for
the four compositions with Computer Graphics (created in MAYA from Autodesk, see for more information: https://
www.autodesk.com.au/products/maya/overview) of the Dutch artist: Willem Willemse (for further information see:
http://www.willemwillemse.com).

 Listen to some of the compositions created by the Author and take a look at the scores as well at: https://44

mgm2.home.xs4all.nl/compositions.html or use michelkoenders.com and look for the composition ‘Scope’.

21

https://mgm2.home.xs4all.nl/compositions.html
https://mgm2.home.xs4all.nl/compositions.html
http://michelkoenders.com
https://www.autodesk.com.au/products/maya/overview
https://www.autodesk.com.au/products/maya/overview
http://www.willemwillemse.com

New computer compositions will explore different compositional techniques by creating different setups

of our strategy in CACE4. This flexibility offered by CACE4 is one of the more interesting features of the

program. As data-sets can be manipulated rather quickly and by having flexibility in creating different

strategies the musical output for a composition can be generated rather easily and swift. This offers the

user the possibility to generate a lot of composition material in a rather short time. Thus creating many

options for experimentation with the musical material needed for the composition .
45

The prepublication of CACE4 version: 0c.97.x can be found at: https://mgm2.home.xs4all.nl/cace4.html  

 This process can be automated by using the AutoFlow option in the process window. When a CACE4 Object has its 45

AutoFlow option selected only the CACE4 Generator Objects needs to be changed all other CACE4 Objects in the
chain are subsequently recalculated.

22

https://mgm2.home.xs4all.nl/cace4.html

A LITERATURE LIST.

Computer composition books:

Editors, et al. 1985. Foundations of Computer Music. Cambridge, Massachusetts London, England: The MIT

Press. Computer Music.

Ariza, Christopher. 2005. An Open Design for Computer-Aided Algorithmic Music Composition: athenaCL.

Boca Raton, Florida USA.: Dissertation.com. Music & Informatics.

Barbaud, Pierre. 1965. Initiation a la composition musicale automatique: Dunod, Paris 1966. Music &

Informatics.

Cope, David. 1991. Computers and Musical Style. Oxford, UK: Oxford University Press. Music &

Informatics.

Cope, David. 2001. Virtual Music Computer Synthesis of Musical Style: Cambridge, Massachusetts 

London, England: The MIT Press. Music & Informatics.

Cope, David. 2005. Computer Models of Musical Creativity. Cambridge, Massachusetts London, England:

The MIT Press. Music & Informatics.

Editors, et al. 1985. Foundations of Computer Music. Cambridge, Massachusetts London, England: The MIT

Press. Computer Music.

Loy, Gareth. 2006. Musimathics, the mathematical foundations of music, volume 1. 2 vols. Vol. 1.

Cambridge, Massachusetts London, Engeland: The MIT Press. Music, Mathematics and Informatics.

Loy, Gareth. 2007. Musimathics, the mathematical foundations of music, volume 2. 2 vols. Vol. 2.

Cambridge, Massachusetts London. England: The MIT Press. Music, Mathematics and Informatics.

Moore, F. Richard. 1990. Elements of computer music. London: Prentice-Hall. Music and Informatics.

Nierhaus, Gerhard. 2009. Algorithmic Composition, Paradigms of Automated Music Generation. Wien

(Viena): Springer-Verlag. Algorithmic Composition, Music and Informatics.

Roads, Curtis. 1996. The computer music tutorial: Cambridge, Massachusetts London, England: The MIT

Press. Computer Music, Music, Mathematics and Informatics.

Taube, Heinrich K. 2004. Notes from the Metalevel, Introduction to Algorithmic Music Composition.

Edited by Marc Leman. 6 vols., Studies on New Music Research. London UK.: Taylor & Francis Group. Music

& Informatics.

Temperley, David. 2001. The Cognition of Basic Musical Structures. Cambridge, Massachusetts 

London, England: The MIT Press. Music, Cognition and Statistics.

Temperley, David. 2007. Music and Probability. Cambridge, Massachusetts London, England The MIT Press.

Music, Cognition and Statistics.

23

Xenakis, Iannis. 1971. Formalized Music. Bloomington, London: Indiana University Press. Music &

Informatics.

Information Retrieval books:

Büttcher, Stefan, et al. 2010. Information Retrieval 

Implementing and Evaluating Search Engines. Cambridge, Massachusetts London, England: The MIT Press.

Information Retrieval, Informatics.

O'Neil, Cathy, and Rachel Schutt. 2014. Doing Data Science. Straight talk from the frontline., Nutshell

Handbook: O'Reilly, USA. Informatics.

Provost, Foster and Tom Fawcett. 2013. Data Science for Business. O’Reilly Media Inc. USA, Informatics,

Big Data.

Data Mining:

Pang-Ning Tan, Michael Steinbach, Anuj Karpaten and Vipin Kumar. 2020. Introduction to Data Mining.

Pearson Education Limited, NY NY USA. Data Mining.

USED LITERATURE

Carpenter, Gila, and Stephen Grossberg. 1987. "ART 2: self-organization of stable category recognition
codes for analog input patterns." Applied Optics 26 (23).

Dennit, Daniel C. 2017. From Bacteria to Bach and Back. The Evolution of Minds. New York, London: W.W.
Norton & company. Evolution, Phylosophy and Informatics.

Ghezzi, Carlo, and Mehdi Jazayeri. 1982, 1987. Programming Language Concepts. New York, Chichester,
Brisbane, Toronto, Singapore: John Wiley & Sons. Informatics.

Keene, Sonya E. 1989. Object-Oriented Programming in Common Lisp, A Programmer's Guide to CLOS.
USA: Addison-Wesley. Informatics.

Klingbeil, Michael. 2009. "Spear." [Software Application]. http://www.klingbeil.com/spear/.

Koenders, Michael G.M. 2016. From Music Information Retrieval (MIR) to Information Retrieval for Music
(IRM). Music, Mathematics and Informatics - Thesis.

Lawless, Jo A., and Molly M. Miller. 1991. Understanding CLOS, The Common Lisp Object System: Digital
Press. Computer Science.

Rameau, Jean-Philippe. 1722. Traité de l'harmonie réduite à ses principes naturels. Dover Books, Dover
Publications Inc. New York 1971. Music Theory.

24

http://www.klingbeil.com/spear/
http://www.klingbeil.com/spear/
http://www.klingbeil.com/spear/
http://www.klingbeil.com/spear/
http://www.klingbeil.com/spear/
http://www.klingbeil.com/spear/
http://www.klingbeil.com/spear/
http://www.klingbeil.com/spear/
http://www.klingbeil.com/spear/

APPENDIX 1	LIST OF ALL OBJECTS AVAILABLE IN CACE4 (0B.97.X).

Larger CACE4 Object

group

Subclasses: CAC4 Object description CACE4 box

object

colour.

With

Annotation

Math Generators All fractals:

Automata (),

Bifurcation (),

Sierpinski (),

Iterated Function System (),

Julia (),

Mandelbrot 1 () & 2,

Mira (). 

All attractors:

Henon 1 () & 2,

Lorenz () ,

Rössler () ,

Ikeda map ().

All (random) functions:

Brownian Movements (),

Random Cloud (),

Chaos on Torus (),

Linear Congruential Method (),

Tendency Masks (),

Number Sequences (),

Function Generator ().

Mathematical (functions)

Generator Modules for use at the

beginning of every strategy as the

source of input.

:blue

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

File generators spear-partials-text-file () 

text-file ()

midi-file ()

Generator Modules for reading

files (at the beginning of every

strategy) as the source of input.

:lightblue 

id. 

id.

-

-

-

Artificial Intelligence (AI)

generators

BioArt () A rule based mini world for

creating musical material.

:orange -

Artificial Intelligence (AI)

manipulators

ART2 ()

rsm-fuzzy ()

Adaptive Resonance Theory 2

Neural Network.

A Fuzzy Logic Controller.

:orange -

no

25

DATA manipulators pruning () 

merging ()

odd/even ()

scaling ()

shuffler ()

sorting () 

splitting ()

filtering ()

For manipulating the data by

deleting, merging, scaling, sorting,

splitting, filtering and checking

odd-even.

Randomize order.

Sort and stable-sort.

Separate streams.

Shelf- and Savitzky-Golay filter.

:palevioletre

d 

id. 

id. 

id.

yes 

yes 

yes 

yes

yes

yes

yes

yes

MATH Manipulators math-clusterer () 

calculator () 

correlator () 

disturbance ()

interpolator () 

set-theory () 

math-sieve () 

math-property-sieve ()

Several techniques of

manipulating the data by means of

applying different mathematical

functions.

:orangered2 

:orangered3 

id. 

id. 

id. 

id. 

:pink 

:orangered1

yes 

yes 

yes 

yes

yes 

yes

yes 

no

Machine Learning and

Information Retrieval

Manipulators

EM () 

k-means () & k-means ()++

k-NN ().

HCA ()

Recommendation System ()

Expectation Maximization, k-

means(++) and k-NN (Nearest

Neighbour) as Hierarchical

Cluster detection Techniques.

HCT + WPGMA.

Linear Regression Techniques.

:red 

id.

id.

id.

id.

- 

-

-

-

-

Score No subClasses The CACE4 for creating a simple

score.

:grey -

CACE Processor No subClasses The main CACE4 Processor

object were all strategies should

be developed.

:black -

CACE Project No subClasses The CACE4 Project with at least

one Processor Object (which

contains the strategy) and one

Score Object.

No Box -

Annotator midiannotator ()

mxmlannotator ()

The CACE4 Annotator Object for

(MIDI) annotating of the data.

The CACE4 Annotator Object for

(MusicXML) annotating of the

data.

:grey yes

yes

26

Table 2. Table of all 55 CACE4 Objects available in version CACE4 0b.97.x

NB. The objects with no for the ‘with annotation column will have annotation available in one of the future updates.
The Objects with ‘-‘ are omitted of having any annotation information.

APPENDIX 2	CACE4 SESSION AT WORK.

Figure 11. A typical CACE4 session of several open windows. The setup shows a Processor window, a Project
window and a CACE4 Score Object.

Translator miditranslator ()

mxmltranslator ()

The CACE4 Translator Object for

translating the (previously as

MIDI annotated) data to the

CACE4 Score Object.

The CACE4 Translator Object for

translating the (previously as

MXML annotated) data to the

CACE4 Score Object.

:purple yes

yes

Informer/Viewer informer () The CACE4 Object for Viewing

all data in a non-destructive way.

:green yes

27

 
 

 

 

__ © 2022 Michèl Koenders

28

Figure 12. A Processor Object displaying several AI (ART2 NN) and HCT CACE4 Objects.

	Index.
	Table of figures
	Table of tables
	Preface.
	Do we need another algorithmic composition environment/program?
	But what is CACE4?
	CACE4: Software design ideas and applied programming techniques.
	MVC paradigm.
	COSMOS2.
	From concept to a working CACE4 program.
	About the CACE4 GUI.
	CACE4 Object IO.
	Developing a strategy by chaining CACE4 Objects into a process.
	CACE4: the use as a computer music composition program.
	The world of Artificial Intelligence and Machine Learning: Top down versus bottom Up.
	Future developments.
	Conclusions.
	A Literature list.
	Used Literature
	Appendix 1 List of all Objects available in CACE4 (0b.97.x).
	Appendix 2 CACE4 session at work.

