FROM MUSIC INFORMATION RETRIEVAL (MIR) TO
INFORMATION RETRIEVAL FOR MUSIC (IRM)

Michaél G. M. Koenders

A thesis submitted in partial fulfilment of
the requirements for the degree of

Doctor of Philosophy

Sydney Conservatorium of Music
University of Sydney

June 2016

Supervisor: Dr. Ivan Zavada.

Auxiliary Supervisor Dr. Michael Smetanin.

Statement of originality

I declare that the research presented here is my own original work and has not been submitted to any

other institution for the award of a degree.

Signed:

Date: 28™ of June 2016.

1

Abstract

As an algorithmic composer I have been looking at a more abstract meta-level of musical composition:
style and structure of a musical composition. To accomplish this I looked at certain techniques from
the domain of (Music) Information Retrieval, in particular at some (common) general data mining

algorithms.

Other well-known approaches, such as the use of Augmented Transition Networks (ATN) from the
field of Music Information Retrieval are, to a certain extent, adequate as long as one keeps the
underlying tonal constraints and rules as a guide to understanding the structure one is looking for. But
since a large proportion of algorithmic music, including music composed by the author, is atonal, tonal

constraints and rules are of little use.

Analysis methods from the field of Information Retrieval such as k-means and Expectation-
Maximisation (EM), both Hierarchical Clustering Techniques (HCT), facilitate other approaches. HCT
are Information Retrieval and general data mining tools that are better suited for finding (clustered)
structures in large data sets. Other techniques as the ART2 Neural Networks (Adaptive Resonance
Theory) can be used for analysing and categorising these data sets. And even more conventional
statistical tools as histogram analysis, mean, variance as well as correlation calculations can tell us
something about certain connections between members in a data set. Altogether a most promising
palette of usable data analysis methods and strategies for creating algorithmic atonal music is now at
our disposal. Now acting as (software) strategy tools, their use is determined by the quality of their
output and usability in a musical context as I demonstrate when developed and programmed into my
Computer Assisted Composition Environment: CACE4. We therefore turn Music Information
Retrieval techniques the other way around and use their specific techniques and their associated
methods of Information Retrieval and general data-mining to access the organisation and constraints

of abstract (non-specific musical) data in order to use and transform it in a musical composition.

In this thesis I will review and discuss obtained results from the previously mentioned IR techniques
and their specific adaptation(s) for use as building blocks in the CACE4 software application. By
using them in this way as mathematical principles and methods, without the musical context, it is
possible to use them as techniques in order to find structure and relationship in large(r) amounts of
data. By using the data in this way we are now able to develop strategies to satisfy our musical goals:
generating musical material with certain musical characteristics (i.e. style, structure, form and
aesthetics).

This project consists of a thesis outlining the analytical methods as previously mentioned and
implementing the methods in an application (CACE4) together with a portfolio of a number of

compositions and their analysis.

111

Acknowledgements

Dr. Ivan Zavada.

Dr. Michael Smetanin.

MSc, MMus. Hans Timmermans.

Prof. Dr. Ludger Briimmer.

Simon Carter.

Pieter Suurmond.

Ted Szantd.

Willem Willemse.

Ensemble Camenae (Tizianna Pintus, Bart de Vrees, Antonius Pratsinakis, Daniél Kool, Laura
Carmichael and Rozemarijn van Egeren).
Laurens de Boer.

Barbara Woof.

And many thanks to friends and family for their support:
Woof fam., A. Koenders-Seiler.

George Henderson Scholarship made available by the GH Foundation.

v

Index/Table of contents

FROM MUSIC INFORMATION RETRIEVAL (MIR) TO INFORMATION RETRIEVAL FOR

IMUSIC (TRM) ettt st et sttt st s at e s ht e sat e s at e et e s a et satesateeatesateemtesaeesatesateeane i
Statement Of OTIZINAIILY ..oc..eiiiiiiiiiieie ettt e e ettt e e sttt e s eanbeeesateeessaseeeesnnseeeans il
ADSITACT ...ttt ettt et e s ettt e s e s e st bt e bt e be e e s et e s b et e b et e b et e naeenareesaneesanee e iii
ACKNOWIEAGEIMENESieeiiiiiee ettt ettt ettt e ettt e s et e e sttt e s s bbeeeeabteesanseeeesnsbeeesnssteessnnseessnnsees v
INAeX/TabIe Of CONEMES.covtiiiiiiiiieiiieeie ettt ettt st se e st esabeeesbeeesbeeesbneesmneesaneesareeenne v
T o) N o] 013 T B [T PRSPPI viii
LISt OF EQUALIONIS ...eeeiiiiiieeeiiiee ettt ettt ettt e et e e ettt e s et ee e eaebeeesenbbeeeensbeeesnssbaessnnseeesnnnes iX
LISt OF FIGUIES .ottt ettt ettt e e ettt e e et e e s st e e eaabbeeesaabaeeensbeeessabeaeesnnbeaesnaseeas X
LIST OF TADIES ...ttt ettt et et e sab e s e s sabaeenbeeenrneenanees Xxiii
(@1 3E21 017 ol B 115 ¢ Te L1 T 50 + OSSPSR 1
Chapter 2 Music and MathEMALICSccecuiiiiriiiieiiiiiieeiite ettt et e st e s e ibeeessbeeeesnaeeesnareeas 5
2.1 Sharing the NUMDETS.ccociiiiiiiiieeeieee ettt et e e st e e st e e e s beeeeesbeeessabeeeesnbeeesnaseeas 5
2.2 Adding a certain ratio: Pythagoras, Birkhoff and Max Bense.........ccccccceevviiiiinniiiiniineiieeee, 7
2.3 How is this idea incorporated in the design of CACEA47coooviiiiiiiiiiiei e, 10
Chapter 3 From MIR t0 TRIMooiiiiiiiiiieeeetee ettt ettt e et e e st e e st e e s e neeas 12
3.1 DEIINITIONS. ..eeiiiiiiiiiiieeiteeetee ettt ettt sat e st e s e ettt sb et ebeeesbneesereesaneesaneesaneeenaeenne 12
3.2 Taking a look at algorithmic music COMPOSItION. ...ccecuvieerriiiririiieeeiieeerieeeerieeeeeeeeeeieee e 13
3.3 Creating musical tools from common Information Retrieval techniques.cccocceevrrieeeennen. 17
Chapter 4 CACE4: design and analySiscccueieiiiieeiniiieeiniiieeeieeeeeiiee e steeeeitee e sire e e st e e ssbeeessneeas 19
4.1 Design and development criteria of CACEA4ccccuuiiiiiiiiiiieeee et 19
4.1.1 Open-ended SOftWAre dESIZN.ccecuveiiriiiiiiiiiieieiiiee ettt et ee e ettt e e st eesebteeesbteeeseabreessneeessnee 20
4.1.2 Easily extendable and modular deSiZN.c..ceiviuiieiriiiiiiiiiie et 21
4.1.3 EdUCAtiONAl PUIPOSES. ceeeuviiieiiiiteieiieeeeiiteesetteeeetteeesitteeseabteessseeeesastaeesasbeeeesasteeesansaeessnseeessnne 21
4.14 Suitability for creating contemporary (acoustical and electronic) compositions.c........... 22
4.2 Technical DevelopmENnt CIItETIA.ccuuieirriieiiiiiieieiiie e ettt e eitee e st e e s bree e s tteeeseabeeessabeeeesnee 23
42.1 Computer programming laNGUAZE.ccueeerriuieeiriiieeriiieeeeiteeeeieeeesstreeseteeeesssteeessreeesssseeessnnes 23
4.2.2 1DE, the Integrated Development Environment.ccooocveeiviiieiiiiieeiniieeeeieee e eeieee e 24
423 MVC, the Model View Controller paradigm.coeccueeerriiieeiriiieeriiieeeeiieeeerieeeseieeeseieeeesnee 25
424 GUI, the Graphical User INterface.ceevvuiiiiiiiiiiiiiieeiiee ettt 25
4.2.5 OOP, the Object Oriented Programming software development technique..............cccoecuveeennee 26
4.2.6 The choice of a programming language; why LISP?ccoooiiiiiiiiiiiieeeeeeeee e 27
4.3 Design Analysis Of CACEA.ooo ittt e e st e e st eessneeeesnee 30
4.3.1 The CACEA GENETALOTS. ...cccutterurierteeriieeiieeteeerieeesreesreesreesneeebeeesseeesaneesaneesaseesnresemesessaeensnes 31

4.3.2 The CACE4 ManipulatOors.c..eeiieiuieiiiiiieeiiieeeeiite ettt esetteeseiteeeseitteesebteeessteeessnseeessseeessnnes 32

4.3.3 List of all objects and functionality in the software package.cccccceevviiieiiiiiieiiniieeinieeeee 34
434 The CACE4 Project object and diSPlay.......cccueeiveiiiiiiiiiiiiiiie ettt 35
4.3.5 The CACE4 Processor object and diSplay..........cccueeeeriiiiiriiiieiniiiee et 37
43.6 The CACE4 Object System & Modelling Organizing Shell, COS&MOS2: connecting

EVETYLNING LOZETNET. ...etiiiiiiiiieeee ettt et e e et e e e st e e e sttt e e s sabteessabbeeesnbeeesnnbeeesenneeas 38
4377 UML 2.5 dIQZIAMS . ..coittiiiitieiieitenieeniee sttt ettt st e st e bt e sbee s bt e sbeesbeesheesbtesbeesbeesbeesbeesueenbeenns 41
Chapter 5 CACEA4: taking a closer look: GUI and software functionalitycccoeevveeiviiiiiinieerennnen. 43
5.1 The CACE4 GEeNerator ODJECLS. ..ccieuiiieriiiieiiiiee ettt e esiteeeetteeeeiteeessiteeessabteessabeeesssnteeessabeeessseeas 43
5.2 The CACE4 Manipulator ODJECES.ceiieiiiiiiiiieeiiiieeeeiiteeeiteeeeitee st e e st e e s sbeeeesateeessabeeeseneeas 44
5.3 The CACE4 Al Manipulator ObJECt rOUP. c...eeeiiruiieiiiiieeeiiieeeeiiee e eiteeeeite e et eesieeeeesbeeeeeaeees 45
5.3.1 Adaptive Resonance Theory Neural Network (ART2). ...ccccooviiiiiiiiiiiniieeiieeeeeee e, 45
5.3.2 ART2 GUI deSIZN tOPICS. teerurieeiriiieeiiiiieiiiieeeeitee e ettt e e et e e e stteeestteeessabteessabeeeesneeesssabeeessseeas 48
5.4 The CACE DATA Manipulator ObJECt SrOUP. .eeevvveeiriiieeiiiieeeeiieeeeiteeeeiteeeeieeeeeieeeessreeeeeneeas 49
SUAT PIUNET. ceeiiiiiiiiietc ettt ettt ettt st st et et e s bt e e s bt e e sateesabeeeabeeebeeensaeenreesaneesaneens 50
R Y (5 ¥ 1<) PSPPSRSO 51
S8 SOTLET. ceveieiiieiieete ettt ettt ettt ettt e s et st s et st et e be e s be e e s be e e sat e e s be e e b et e b et e ba e e nreesareesaneean 52
SAA SPILLET. ceeeiiiitieieiee ettt et e b et e bttt e bt e bt e bt e bt et e bt e bt e bt e bt e bt e beenreen 53
5.5 The CACE MATH Manipulator ObJECt rOUP.....ccuutiiriuiiiiiiiieeeiiie et eiteeeeieeeeeiiee e ieee e 54
5.5.1 CIUSLEIET (CLIUS) .coiiiiiiiiiiiieeeeee ettt e e ee e e e e eeaeaeeaeeaaaaaaaeaeeeeeeeens 54
5.5.2 The Statistical Manipulator (STAM).....ccooiiiiiiriiieieite ettt e et e e e e e 56
5.5.3 The different STAM PrOCESSES.ueiieriiieriiieeieiieeeeiiteeertteeeetteeessteeessibteessseeeessateesssbeeesssseeas 58
5.54 STAPS: a STAtistical ProOperty SIEVE.cccueeiiriiiiiiiiiie ettt ettt e e 64
555 COITEIALOL . ..eiiiiiiiiieiieetee ettt et et et et e st e s e et et e ba e ar e e sareesaree s 67
5.5.0 SCALLT. ceeeiiiiiiiie ettt et e st s et e bt e be e nr e e sareesanee s 73
55T DISTUIDET. ceeeeiiiiiiiieiie ettt ettt st et ettt et e s bt e sbte e st e saneeeabeeebeeeabe e e nreesareesareens 74
5.6 The CACE ML_MIR Manipulator ODJECt STOUP.ccivriiiiriiiieeiiiieeeiteeeiteeeeieee et e e 79
501 K-MIEANS. .eeeiiiiieiieeee ettt et ettt et et s et et e be e e nreesareesanee s 79
5.6.2 Expectation-Maximisation (EM).ccccoiiiiiiiiiiiiiiii ettt ettt 81
5.7 Other objects Of CACEAttt e et e e st e e s sbeee s e neeas 83
571 INFOTMET ODJECL. ceeiniiiiiiiiiiie ettt ettt e e ebte e e sttt e e s abteeseabbeeesnbeeeesabeeesenneeas 84
5.7.2 TransSlator ODJECL. c...ueiiiiieiiiiiiiee ettt ettt ettt e et e e et e e ebtee e sttt e e sabteessabeeeesabeeesnabeeesenneeas 85
5.7.3 The CACE4 SCOTE ODJECL. ceouviiiieiiieeiiiiee ettt eeitee ettt e et e e e st e e sttt e e ssabteessabteeesateeessabeeessneeas 87
5.8 Building a strategy With CACE4 ODJECIS ..cccoutiiiiiiiieieiiiee ettt st e e 89
5.8.1 About the Art of designing a CACEZ StrateZyccoovueeieriieeiriiieeniieeeeitee e ereeeeesieee e 89
5.8.2 How does CACE4 compare with other computer composition environments?.............cc......... 93

vi

Chapter 6 Analysis of four Compositions created with the aid of CACE4cccoocoiiiviiiinniienenen. 97

6.1 INETOAUCTION. .eiiiiiiiiiiiieiiie ettt ettt et et e sbt e e s bt e st eesabeeeabeeebeeenbeeemreesaneesaneens 97
6.1.1 ATHISHIC TEEIECTIONS. ..eeiruiiiiiieiiie ettt ettt ettt ettt e s e e et e e e esaneesaneesanee s 97
6.2.1 ‘Argos Pansonus’ (or the meaning of A-mMeans).ccceeevveeiriiiiiiiiiiie it 100
6.2.2 MUSICAL ANALYSIS. 1ouuvrieiiiiieeiiiiieeeiee ettt et e e et e s ettt e e sttt e e s eabtee s sabeeeesnteeeseabaeeesntaeeeanes 104
6.3 ‘MMM_Transforms in pink’: four pieces with computer animation.cceeecveeereveveeersveeennne 106
6.3.1 Musical Analysis and the use of SOUNd.cooviiiiiiiiiiiiiiieee e 107
6.3.2 MUSICAL ANALYSIS. 1ouvrieieiiieeiiiiee ettt ettt e e ettt e sttt e e sttt e e s eabtee s e bteeesnbeeeseabaeeeentaeeeaee 109
(O N o0 o1 OO RSP RUPPPURUTPPRR: 112
6.4.1 Musical Analysis and the use of CACE4.ccoooiiiiiiiiiiie et 112
6.4.2 General remarks on the process of cOmposing ‘SCOPE’.ccovvviiirriiiiririiieeeiiiee et 114
6.5 ZWICKY'S BOX . 1ottt sttt e e st e e st e s et e e s abe e e s e baeeesntaeeeanes 117
6.5.1 CoOmPOSIIONAl PIOCESS. ...eeiiiuiiiiiiiiiiiiiiie ittt ee et e st e s ettt e e sestteeseabaeeesntaeesnes 117
6.5.2 MUSICAL ANALYSIS. 1ouvvieiiiiieiiiiiee ettt ee ettt e et e e e sttt e e s eabtee s ebteeesnbeeeseabaaeeentaeeeanes 122
6.5.3 General remarks on the process of composing ZwicKy’s BOX.......ccccevvrviiiiriiiiiirniieeeniieeennne 125
Chapter 7 CONCIUSION.....ciiiiiiiieiiiee ettt ettt et ee e et e e st e e s e bteeesatteessabteessabteeesnbaeesenbeeessansaeesanes 126
7.1 FINAl CONCIUSION . .couutiiiiiiiiiiiiteeee ettt ettt e e st e s e s e s e earee e et e saneesanes 126
7.2 Future develoOpmENnt PIANS.cocviiiiiiiiiiiiiee ettt ee et e e st eseabaee e sntaeesaes 129
L3 1o] HTeT s 21 o) 1) RSP RUP PPN 132
Appendix 1.1 CACE4 work session €Xample 1......ccccooviiiiiiiiiiiiiiiieeeieee ettt e et 135
Appendix 1.2 CACE4 work session €XampPle 2.........oeieiiiiiiiiiieiiiiieeniieeeeiieeeeieeeesiieeeseveeeesieeee e 136
APPENdiX 1.3 Strate@y “SCOPE . ..eiii ittt et e e st e e s e bte e e sestteeseabaeeesntaeesnes 137
APPENdix 1.4 STAPS GUIL...ooiiiiiiii ettt st sttt 138
Appendix 1.5 Informer GUILoooiiiiiiiiiiii ettt e e st e e s ebae e e sntaeesaes 139
Appendix 2.1 CACE4 Generators: UML (2.x) Class Diagram.cccccceeeveiieeiniiieeniiieeeeiieeeeieee e 140
Appendix 2.2 CACE4 Manipulators, #1 of a UML (2.x) Class Diagramccccceeevuveerevveeensveeennne 141
Appendix 2.3 CACE4 Manipulators, #2 of a UML (2.x) Class Diagramccccceeevveerniveeeniveeennne 142
Appendix 2.4 CACE4 Miscellaneous objects in a UML (2.x) Class Diagram.........ccccccevveevveenneennne. 143
Appendix 2.5 Class diagram of all CACE4-Generators 0bjects #1ccovveieeieiieiiniiieeinieeeeieee e 144
Appendix 2.6 Class diagram of all CACE4-Generators 0bjJects #2cceevcveeeriiireriiiieeenieeeeieeeenne 145
Appendix 3: CACE4 Reference Manual.........cc.cooviiiiiiiiiiiiiiieeiieeeeitee ettt ee e e siaee e 146
Appendix 4: CACE4 MIDI and Audio Reference Table..........ccoocveiiriiiiiiniiiiiniiiiieiieeeeiee e 154

vil

List of Appendices

Appendix 1.1 CACE4 work session eXample 1.......cccoooieriiiniiiiiiniiiieeniecneeeieeeee e 135
Appendix 1.2 CACE4 work session eXample 2.coovierieiiiiinieinieenieeniee et eree e e seree e 136
APPENdiX 1.3 Strate@y “SCOPE . ..eiii ittt ettt et e e s ette e s ebte e e ssstteeseabaeeesntaeesnes 137
APPendix 1.4 STAPS GULL......cooiiiirieiiiieceeeee ettt st st esa et 138
Appendix 1.5 Informer GUILcocoiiiiiiiiiii ettt e 139
Appendix 2.1 CACE4 Generators: UML (2.x) Class Diagram.cccoceevvieerneernienneceneeeneeenneenane 140
Appendix 2.2 CACE4 Manipulators, #1 of a UML (2.x) Class Diagramccccceevveeneeeneeenneennne. 141
Appendix 2.3 CACE4 Manipulators, #2 of a UML (2.x) Class Diagramcccceeevveeveeenueenneennne. 142
Appendix 2.4 CACE4 Miscellaneous objects in a UML (2.x) Class Diagram.........cccccceveeenveenneennne. 143
Appendix 2.5 Class diagram of all CACE4-Generators objects #1ccovvvveeiriiiiiniiiieeinieeeeieee e 144
Appendix 2.6 Class diagram of all CACE4-Generators 0bjects #2........cccevveerveerneenneeeneeeneeenneenane 145
Appendix 3: CACE4 Reference Manual..........cooceeviiiiiiiiiiiiiiiiieiiceicenree et 146
Appendix 4: CACE4 MIDI and Audio Reference Table..........ccoocueeviiiniiiniiiniinniiiiceceieenieee 154

Appendix 5: CACE4 v00d.59.00.498 CD-ROM with the application.

Appendix 6: Portfolio Compositions:

Score Argos Pansonos
Score Zwicky’s box

Score Scope

DVD-video: = MMM_Transforms in Pink: orgamatrixflf(1-12)vert
MMM _Transforms in Pink: sdspheres(10-13)
MMM_Transforms in Pink: sc-planes(6vert)zzz

MMM_Transforms in Pink: dbl-rotormatrixzz

Argos Pansonos
Zwicky’s box
Scope

viil

List of Equations

Equation 1 Birkhoff's equation of the aesthetic MeaSUTe.cccevueiiiiiiiiiiiiie e 9
Equation 2 The Carpenter and Grossberg ART2 Model equations (Watson 1991, p. 83).ccceeenneen. 47
Equation 3 Adding alOTithim........cooiiiiiiiiiiiieiiie ettt sttt e s 51
Equation 4 Reverse algOrithim..........ccuiiiiiiiiiiiiiiiieiee ettt et et e e et e s 51
Equation 5 Sorting algOrithim........coooiiiiiiiiiee et e 52
Equation 6 Zipper alGOrithIm.coiiiiiiiiiiii ettt s s 52
Equation 7 Newtons Universal Law Of GTavity........cccoecoieiiriiiieiiiiieeeniiee ettt e 55
Equation 8 Mean fOrmULA.c.c.oiiiiiiiiiiiii ettt et e s e e st e e st e s neeas 59
Equation 9 A variable segmented MEaN.cc.coiviiiiiiiiiiiiniiiee ettt e 59
Equation 10 Median fOr { = UNEVEN.cccciiiiiiiiiiiiiee et etee ettt e e stte e st e e satee e ssabeeeseneeas 60
Equation 11 Median fOr { = @VEN. ...cccuiiiiiiiiiiiiiiiie ettt et e s st e e st e e s eneeas 60
Equation 12 The Shifted data VarianCe.cccceeveiieiiniiiiiniiiee ettt ettt e e s 61
Equation 13 Standard Deviation fOrmula.cooouiiiiiiiiiiniiiie et 61
Equation 14 Linear Regression formula (generalized form).ccccovvieiiniiiiinniieiinieeeeeee e, 62
Equation 15 Gumowski-Mira fractal set of @qUations.ccceeiiriiiiiiriiiiiiiee e 66
Equation 16 Pearson equation fOrmula.ccccoeiriiiiiniiiiiiiiiee ettt 70
Equation 17 Spearman equation fOrmMUIA...........coooriiiiiiiiiiiniiiie ettt et 70
Equation 18 The Kendall T formula............cooviiiiiiiiiiiiie ettt e 71
Equation 19 Algorithm description of the CACE4 linear scaler.cccccoeveieiiniieiiniiiieniiee e, 74
Equation 20 Disturber algorithm deSCription.........ccueeiiriuiiiiriiiieeiiee ettt e e e 75

Equation 21 Sierpinski triangle (also called Sierpinski gasket or sieve) Automaton Algorithm

(4 ISTe 4 01510) 1 AP PP PRSP 77
Equation 22 k-Means algorithm: the assignment Step (SteP 1). .eoocveeiiriiiiiiiiiiiiiee e, 80
Equation 23 k-Means algorithm: the update Step (STEP 2)..cieeueieerriiieiriiieeiiieeeriteeeeeee et reee e 80
Equation 24 The Maximum Likelihood Estimate (MLE).........ccccccceiiiiiiiiiniiiiiiiee e 82
Equation 25 Expectation-Maximisation (EM) algorithm, the expectation phase (E step).cc......... 82
Equation 26 Expectation-Maximisation (EM) algorithm, the maximisation phase (M step)................ 82

X

List of Figures

Figure 1 The CACE4 Application ICOM.ccoviiiiiiiiiiiiiiie ettt ettt et e e xiv
Figure 2 A Single CACE4 object box, in this case: a DATA-Manipulator object with an Input (in) and

AN OULPUL (OUL). weveeeeitieeeiiieeeeiteee et te e ettt e eritteesstaeeessarteesassteesasasteesanseeesansseesesseeessnsaaessnnseeessneens 21
Figure 3 The MVC programming paradiginl.cccueeeeriuieeeriieeeniiieeeniieeeeeiieeeesiieeessreeeessnreeessveeessnenas 25
Figure 4 The CACE4 Generators and their CLOS class dependencies.ccocceevveenieeniceneennneenneen. 31
Figure 5 The CACE4 Manipulators and their CLOS class dependencies.cccceevveeeernieeennieeeennnnen. 33
Figure 6 Example of Class dependencies and methods with shared functions.........cc.ccceeeveevvveeneeenneen. 34

Figure 7 An example of a CACE4 Project window with three Processor objects and one Score object.

... 36
Figure 8 Colour coding of the CACE4 Project ODJECTS.....ccovviiiiiiiiieieiiieeeitee ettt 36
Figure 9 An example of a CACE4 Processor window display with a simple strategy for using k-means.

... 37
Figure 10 A selection of the coloured CACE4 Processor ObJECtS.covveerrreerneeenieeneeenieenreenneenneens 38
Figure 11 CACE4 COS&MOS?2 the chain of communication by OBJ-ID and data transfer between the

CACEA GUI ODJECLS. ...cuviriieeiirinieeitetisitetete sttt sttt ne st et eaesrt st esne st sreeseeresaeeaeenesneeaeennes 39
Figure 12 The CACE4 UML Packet DIagram..........cccceeerereeieninieienieniineeeenie e eneenns 41
Figure 13 The A.I. Manipulator ART2 (Neural Network) GUI. This is view-1 the 'normal' view....... 46
Figure 14 View 2: the PIXEL VIEW.....ciiiiiiiiiiiieniieiieeeiee ettt ettt et s emeeesaeeesaneesanee s 49
Figure 15 VIew-3: the VECOT VIEW. ..cccuiiriiiriiiriiiiiieiiie ettt ettt et stee e e e esmeeesaneesanee s 49
Figure 16 View-4: the rectangular VIEW.c.ccccoviiriieriiieiiiieiieenitesieestee e e e eseeesaneesanee s 49
Figure 17 VIiew-5: the CIICIE VIEW. ...ccccuioviiiiiiiriiiiiieiiceee ettt et 49
Figure 18 The CACEZS PIUNET......cccuiiiiiiiiieiienite ettt ettt ettt e st sreeeree et e essneesaneesanee s 50
Figure 19 The Merger GUILc..coiiiiiiiiiieiiienteeecee ettt ettt et s s et esareesaneesanee s 51
Figure 20 The Sorter GUILccc.eiiiiiiiiiiieeieereeee ettt ettt st e e reesaneesanee s 52
Figure 21 The SPIHEr GUIL ...ccouiiiiiiiiieie ettt ettt s et e e sanee e s 53
Figure 22 The CIUSErer GUILccoouiiiiiiiiiiiiiiienieriteee ettt ettt et s e e e saneesanee s 54
Figure 23 An example of a simple setup for working with the CLUS object in the CACE4 Processor

WIIAOW . ettt et et et et a e e b e b et ae e es 55
Figure 24 The STAM GUILL......cccooiiiieiiiteeeneees ettt ettt st s s e 56
Figure 25 Example of a setup centered round a STAM object in the Processor window. 58
Figure 26 Minimum and maximum display in the STAM GUI.cccccoiiiiiiiiniiieeeee e, 58
Figure 27 Display Of MEAN......ccceiiviiiiiiiiiieiiieieneectte ettt ettt e e e e saneesanee s 59
Figure 28 Display of the MEdian.c.covuiiriiiniiiniieiiiceee ettt sttt esaree s s 60
Figure 29 Display of the VArianCe.cocceeriiiriiiiiieniiciieeieee ettt s 60

Figure 30 The display of the Standard Deviation, the Absolute Deviation and the Squared Deviation of

thE TNPUL STIEAIIL. ..eieiiiiiiiiiiiiee ettt eeee ettt e ettt e e et e e e st ee s sabteeesateeesabteessnseaeesnsaeesnnseeesnnneeas 61
Figure 31 Display of the 2 different Correlation calculations.c.cccevcveereeernerenieencenicenieeneenneene 62
Figure 32 Display of the Linear Regression calculation...........cceeveerieenieeniecineeinieeniceeceneeenree s 63
Figure 33 Display of Histogram calculation of the input liSt..........ccoceerieenieeniiiiniiniceicereenecneene 63
Figure 34 Display of the STAtistical Property Sieve or STAPS GUI.ccccccooviiimiiiiniiiiiiinienecneene 64
Figure 35 Example of a small setup for using the STAPS object in the CACE Processor window......65
Figure 36 Display of the original GUI of a MATH Generator Wwindow.cccccceevveenieeniceneennneenneen. 66
Figure 37 The output of the Gumowski-Mira fractal displayed in the Informer object. 67
Figure 38 The output displayed in an Informer object after STAPS has been used.ccoceevreennnen. 67
Figure 39 The Correlator algorithm deSIZN.coeevuieiiiiiiiiiiiee ettt e e 68
Figure 40 CACE4 Correlator GUIL.......cooiiiiiiiiiiiiieciieciee ettt st e s s 69
Figure 41 A CACE4 Strategy setup for using a CACE4 Correlator.........ooovveeivviieeiniieeeniiieeeeiiee e, 72
Figure 42 The Scaler object with 4 indexed Minimum and Maximum values.........cc.ccccecueerveenneennnen. 73
Figure 43 Display of the Disturber object with 4 indexed percentage values.ccoceevveeveenceennnen. 75
Figure 44 The display of the output of the Brown fractal (as a straight lin€)..........ccoeceeevveenvcennecnnnnn. 76
Figure 45 The output of <Disturbance 1>.ccoccoiiiiiiiiiiiii e 76
Figure 46 The output of <Disturbance 2>.cc.cccooiiiiiiiiiiiiiieec e 76
Figure 47 Example of a small strategy setup for the Disturber object in the CACE4 Process window.77
Figure 48 Display of the GUI of @ MATH GEeNerator.ccoccueeriierieenieenieenieeeneeeee e enreesree e 77
Figure 49 The Informer object shows the same output as the Generator object except the display has

DEEN AILETEA. ...t 78
Figure 50 Display of another CACE Informer objects, attached to the Disturber object...................... 78
Figure 5T A-IMeans GUILLc...cooiiiiiiiiiieie ettt ettt et sree e et ebe e e sareesaneesanee s 79
Figure 52 EM: Overlapping ClUSter deteCtiON.......cccueeeiriuiiiiriiieeeitee ettt e eeee e et e e 81
Figure 53 GUI CACE4 ML-MIR EM ObJECL......ccceririiiiniiniiieiinieeeeient et 83
Figure 54 The CACE4 Informer object GUILcociiiiiiiiiiiiiiiiieieeecreceee e 84
Figure 55 The CACE4 Translator GUIL.......c.ccooviiiiiiiiiiiiiieieeie e 85
Figure 56 Output from the Micro Traditional QuUantization.cocccevvveerveernieeenieenieenieenreenree e 86
Figure 57 Output from the Longuet Higgens QuantiZation.ccceeviueeeiriieeerniieeeniieeeeieeeenieee e 86
Figure 58 The output of the Translator object as a teXt file.......ccocveviiiriiniiiniiiiieeeecee 87
Figure 59 A CACE4 SCOTE ODJECL. ...ccouiiiiiieiiieniieriteete ettt ettt st e e s e sanee s 88
Figure 60 Example of a working session with several CACE4 objects in the Processor window. 90

Figure 61 Shows the view of the Translator object with the first 27 entries of the translated (to pre-
IMIDI) OULPUL. .ttt ettt ettt e e et e e s ettt e e sttt e e sabt e e e sabteessasbeeeeabteeesaseaeesnnsaeesnnseeesnnneeas 91
Figure 62 Screen shot of Finale™ display of the SMF generated in CACEA4.ccoooeeviievienncennnen. 92

xi

Figure 63 Shows the view of the Translator object with only 12 entries used for translation to pre-

IMIIDT QALA. ettt ettt et et et e bt et et e bt e bt e bt e bt e bt et e be e bt e bt e beeteen 92
Figure 64 Screen shot of Finale™ display of the SMF generated in CACEA4.cocoeviviiiiiiiienennnen. 93
Figure 65 A Top view of a 3D Audiospace design for Argos Pansonos.cccceeeceeeeecvueeeesceeenanns 101
Figure 66 A screen shot of the .csv used for creating musical material for Argos Pansonos.............. 102
Figure 67 The CACE4 Processor strategy for Argos PAnSONOS.cccueeveeueeieicieeiniiieeeeiieeeeeieeeeene 103
Figure 68 A screen shot of the spectral analysis of the used piano sound as seen in SPEAR............. 103
Figure 69 orgafmatrixflf(1-12)vert, computer animation: Willem Willemse.cccoceeevveeneennennnne. 109
Figure 70 sdspheres(10-13), computer animation: Willem Willemse.......c..cccoeeerviiinienniceniienieennne. 110
Figure 71 sc-planes(6vert)zzz, computer animation: Willem Willemse.ccocceevvverviienicinienneennne. 111
Figure 72 dbl-rotormatrixzz, computer animation: Willem Willemse.ccoeccveeiviiiiinniieeiniieeennne 112
Figure 73 The first 25 seconds of the score of the composition Scope...........coovvuevivvviiiiiiieiiiicieenne 115
Figure 74 A 10 seconds excerpt of Scope, showing different notation styles.c.ccceeevvvieerriiiennns 115
Figure 75 View of the ART2 NN Max object and patch in edit mode.ccoecveerriiieinniieeinnieeenne 116
Figure 76 View of the ART2 NN Max object in a max patch in presentation mode.cccecuveeennne 116
Figure 77 Showing timbre numbers related to Sound desCriptions.ccceceerveerrieerneeeneeeneeenneenane 118
Figure 78 The timbre numbers displayed in a xy-axis plot (time - timbre number)...........ccccccevneennee. 118

Figure 79 CACE4 Informer object xy-plot of one of the .csv data sheets used for Zwicky's box. 119
Figure 80 One of CACE4 Project strategy setups used for Zwicky's bOX.cccoceveveviiiieiveeiniceennnnne 120

Xii

List of Tables

Table 1 The seven Liberal Arts grouped into Trivium and Quadrivium.ccccceevveenieenieenieenneenneennne 6
Table 2 Used terminology and definitions.cceouieiiriiiiiniiiee ettt et e e 13
Table 3 Table of all CACE4 superclasses and subClasses.cooceeveriiiiiiiiiiiiiiieecieeeeeee e 26
Table 4 Overview computer assisted COMPOSitioN ENVITONMENTS......cccuveerrrieeerriuieeeriieeeerieeeerieeeesneees 30
Table 5 List of all 34 CACE4 Processor objects for using in the Processor window (CACE 0.56 -
DECEMDBET 2015) . et et et e aaaaaaaaaaaaaaaens 35
Table 6 List of all CACE4 Project objects (2) for using in the Project window in version CACE4 0.56
(DTS 131015 i 1 5) T U U RN 35

Xiil

“But above all we shall have greater strength, for we shall feel we are participating, creators of
ourselves, in the great work of creation which is the origin of all things and which goes on before our

eyes.” (Bergson 1948, p. 105)

“The rule of science is the one posited by Bacon: obey in order to command. The philosopher neither

obeys nor commands; he seeks to be at one with nature.” (Bergson 1948, p. 126)

Figure 1 The CACE4 Application Icon.

Xiv

Chapter 1

Introduction

As a composer I was always intrigued by structures as found in the aural domain of sound and
music as well in the visual world around us. One of my earliest thoughts and desires was to combine
these two more or less separate worlds into one, showing that there is a connection between them and
that they share a common ground and specific structures.

By shifting and redirecting my compositional methodology of working to the domain of informatics
and the use of computers, in the early eighties when cheap desktop computers, (e.g. Ataris and
Commodores) came available for a larger audience, I was at once intrigued by this opening up of a
whole new world of fascinating possibilities. It was now possible for me to start experimenting
through developing software: small computer programs for synthesis and composition. Due to the fact
that most of these early home computers had little ready-made software, I had to start with computer
programming right away. Luckily there was always a compiler or an interpreter available, mostly
BASIC' that in those days came standard with the machine itself. To accomplish new sounds and
music I had to learn to program the computer as well. Fortunately not hindered by thoughts of how

elaborate and time consuming it would be, I started right away.

From that moment on computer programming and composing became synonymous of each other. At
last there was a machine, based on rules of logic, that gave me the possibility to combine the aural and
visual world in one piece of software so I could start exploring there common ground. Now after more
then thirty years of computer programming experience, developing many software applications in the
domain of Digital Signal Processing” (DSP) and musical composition and creating numerous

compositions with it, it is still as intriguing as it was from day one.

Fortunately the technology has evolved enormously and become much more sophisticated over time,
greatly helping me in my quest for looking for structure in the visual and aural world around us.
Concepts as musical structure and structured, statistical analyses of data and data mining’ came

together. If Music has structure and if found data has structure as well, would it be possible to connect

" BASIC: An Acronym for Beginner’s All-purpose Symbolic Instruction Code. The original language design
was done in 1964 by John Kemeny and Thomas Kurtz, Darthmouth College, New Hampshire USA. “It has a
simple algebraic structure and is supported by a simple interpretive implementation. The language became
extremely popular with the advent of personal and home computers.” (Ghezzi and Jazayeri 1982, 1987, p. 354).
% The domain of discrete mathematics applied on signals: “Signals are represented mathematically as functions
of one or more independent variables. For example, a speech signal would be represented mathematically by
acoustic pressure as a function of time,...” (Oppenheim and Willsky 1983, p. 8). Digital Signal Processing
(DSP) is the domain of signal engineering used for processing discrete (digital) signals. It is focused on the
processing of digital streams (signals) with all its possibilities. It is a wide field where the laws of physics are
used for either passively (measuring) or actively processing of a signal.

* The domain of data mining is defined as the process of analyzing data for finding relevant information as
hidden patterns and structures. See for more information about the concept of data mining:
https://docs.microsoft.com/en-us/sql/analysis-services/data-mining/data-mining-concepts

these two worlds? And would it be possible to use ideas from the domain of Information Retrieval*

(IR) and general data mining and use them as part of the compositional process?

The possibility to look at a more abstract and higher meta’ level for analyses and structure into large
amounts of real-world data and to apply found structures for creating music gave me the idea for this
PhD: from Music Information Retrieval® (MIR) to Information Retrieval for Music. Visualising by
means of computer graphics and being able to listen to the results by creating MIDI’ files (SMF) gave

me a first connection between the worlds of hearing and seeing I was looking for.

Looking briefly at certain aspects of tonal music for an example of how to incorporate the idea of
connections and constraints that can be translated to a specific grammar or set of rules and by handling
the data in such a way to make it possible to look for the underlying connections, Augmented
Transition Networks (ATN), derived from the earlier developed Petri nets, are well suited for this

task®.

The scientist and composer David Cope, makes extended use of Augmented Transition Networks
techniques. As Cope states: “Augmented transition networks (ATNs) help vary output and generate
extended examples of natural language processing. ATNs were crystallized and popularized by
William Woods” (Cope 1991, p. 59). And on the next page: “Following roughly the same design as
the language ATN algorithm, the musical version produces logical phrases (...) with style relevance (in
this case Mozart).” (Cope 1991, p. 60) Cope copies the outlined idea of an ATN from Woods and
applies it directly to the link between the ATN model for language and the use of an ATN model for
Music. This approach for modelling information is adequate as long as these underlying tonal
constraints and rules (melody, harmony and rhythm) are kept as a guide for understanding the
structures it applies to. By focusing instead on the domain of Information Retrieval and general data
mining for doing numerical analysis on data for creating artistic output, the use of the internal data is

restricted to a one-dimensional stream for applying (mathematical) functions.

* As described in: Information Retrieval: “Information retrieval (IR) is concerned with representing, searching,
and manipulating large collections of electronic text and other human-language data.” (Biittcher, Clarke, and
Cormack 2010, p. 2).

> A higher meta-level means on a higher, more abstract level, where groups of properties are brought together,
and can be symbolized by different symbols and means. Rick Taube states in ‘Notes from the metalevel’: * If the
score represents the composition then the metalevel represents the composition of the composition. A metalevel
representation of music is concerned with representing the activity, or process, of musical composition as
opposed to its artifact, the score. If the metalevel seems more ephemeral than the performance level it may be
due to the fact that it is more closely related to the mysterious cognitive processes that occur within the
composer.” (Taube 2004, p. 3).

% Music Information Retrieval uses the same approaches and techniques found in the domain of IR only to apply
it solely at the domain of music and sound.

" MIDI is an abbreviation of Musical Instrument Digital Interface, and was first introduced early 1980°s. The
created MIDI files are of a Standard MIDI File (SMF) format, type 1. The MIDI association watches over all
standardization about the MIDI formats and MIDI file formats. See website: https://www.midi.org for details
about MIDI and all of these different formats.

8 “Petri nets are a special type of transition network that is used for the simulation of event-controlled processes
and are represented by bipartite graphs. Nodes may consist of data, conditions and states (places) or actions
(transitions).” (Nierhaus 2009, p. 127).

A construction of an ATN would therefore not be necessary. The fast developing field of Information
Retrieval offers some other approaches: more extended statistical analysis techniques such as k-means’
and Expectation-Maximisation'® (EM) clustering. These two Hierarchical Clustering Techniques''
(HCT) with unsupervised learning seem to be an adequate approach in classifying large(r) sets of data,

without knowing a priori underlying relationship(s) or rules from these data sets.

These analysis methods, both from the group of Agglomerative Hierarchical Cluster'? techniques (and
there are many more), give other, more abstract all-round mathematical tools that are better suited and
of more help to the more abstract domain of atonal music. Other advanced techniques such as
Adaptive Resonance Theory neural networks (ART2"), are also promising for use as a data analysis
method. In addition, even basic tools as histogram analysis, mean, variance and correlation
calculations, product-moment correlation coefficient (Pearson) and rank order correlation (Spearman

& Kendall t) can be useful to understand the underlying structure and constraints being looked at.

more abstract, and most of the time non-musical approach, opens up the vast field of Information

Retrieval and general data mining with all of its extensive and plural techniques.

Overall, it is an approach based on finding structures with no a priori musical knowledge whatsoever.
Structure and organization in (input) data sets, as correlation or density (clustering) as spreading of the
same set or other detectable statistical qualities, are only retrieved and learned by input (e.g. text files)
and their specific analysis technique alone. This way of working liberates one from first needing to
gain an in depth understanding of what type of musical structure and style can be obtained by
incorporating these text files. For example, by using spectral analysis files based on Discrete Fast

Fourier Transforms'* derived from Spear'”, access to a huge domain of interesting data is provided.

? k-means is a clustering around centroids technique for detecting multiple clusters. For details see section: 5.5.1
10 Expectation Maximization is another clustering technique. For details see section: 5.5.2

! Hierarchical Cluster techniques are a group of unsupervised cluster techniques used for detecting separate
groups of clusters in unsorted data.

12 There are two types: agglomerative, or ‘bottom up’ and divisive, a ‘top down’ approach. The divisive method
is obtained by partitioning the observed single cluster to two least similar clusters. The agglomerative method is
obtained by adding the most similar clusters. They can therefore be seen as complementary methods for
detecting clusters.

¥ ART2 Neural Network, is a NN based on the use of Adaptive Resonance Theory originally designed and
proposed by Carpenter & Grossberg (Carpenter and Grossberg 1987). Further explanation about ART2 and its
implementation in CACE4, can be found at section 5.3.1 of this thesis.

14 The Fast Fourier Transform is a technique based on the concept of the French mathematician Joseph Fourier.
It is based on the concept of harmonic analysis of a sound and nowadays is in use in a special format as the
Discrete Fourier Transform (DFT) and thus providing a method for doing an analysis on small segments of a
sound (= band limited signal). Its use in a real-time DSP situation, for example in live performances, is therefore
made possible. The Fast Fourier Transform has two stages; first an analysis of the sound is done, resulting in
spectral components known as complex number pairs, where the real part of the complex number pair is the
frequency component and the imaginary part is the amplitude component of the spectrum at a specific moment
in time. While the sound has now been transformed to the frequency (or complex) domain, easy transformation
of the spectrum is possible, because the two components, frequency and amplitude, are known.

At the second stage of the algorithm it has to be transformed back to the original time domain by using the
inverse FFT, before one can hear the result. For more information about implementation and use of the FFT, see:

Various other types of data can be used in the search for underlying structures. Much scientific data
for analysis is available on the Internet, saved in an Excel or other text based file formats and can be

used for this purpose, with minor editing'®.

All the different approaches, as mentioned above, act as software tools for finding a strategy and are
examined by the goal that can be achieved, based on the quality of the musical output and usability in

a musical composition context.

Instead of using typical Music Information Retrieval techniques, it is turned the other way round and
the approaches of Information Retrieval are looked at in order to obtain access to the organisation and
constraints of abstract, mostly non-specific musical data. By adopting this more abstract approach, it is
even possible to use certain techniques for looking at the structure of the data on a more meta-level'’.
This could be defined as being part of techniques for style and style recognition and also for
organising the structure of a composition. All these separate ideas and different strategies have been
translated into individual software modules that are integrated into a newly designed software
environment I created: Computer Assisted Composition Environment (CACE4), programmed in
LISP/CLOS". These software modules will be tested in functionality and design for writing short and
medium sized compositions. These compositions can either be score-based, performed by musicians,

or they are MIDI based electronic compositions.

The CACE4 environment provides a toolkit of different techniques: solutions from the domain of
Artificial Intelligence and Statistics. Its Graphical User Interface (GUI) makes playing around with the
different components easily and quickly adaptable. This is necessary for doing experiments to find a
well-suited strategy by reordering software modules (as represented by CACE4 objects) and
connecting them in different ways. Accordingly, by doing so, the obtained results as generated by the

software modules can vary strongly.

Most importantly, the composition as a conceptual idea should remain the starting point. Different

compositions therefore, could demand different approaches in strategy.

http://en.dsplib.org/content/fft introduction.html and

http://www .cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html

15 Spear© created by Michael Klingbeil, is an Analysis/Synthesis program based on the principles of Fast Fourier
Transforms. See http://www klingbeil.com/spear/ for further details about Spear.

' A more detailed description of the data format used can be found at section 5.1

'7 Meta-level means in this context: on a higher level of abstraction.

18 LISP is short for List Programming. An all-purpose, Computer Programming language based on lambda
calculus (invented by John McCarthy in 1958). “In fact, the original LISP, introduced by John McCarthy in
1960, known as pure LISP, is completely functional.”(Ghezzi and Jazayeri 1982, 1987, p. 274)

CLOS is short for Common Lisp Object System. An ANSI Standard, Object Oriented Programming language
extension (1994, ANSI X3J13), as described in Object-Oriented Programming in Common Lisp, A
Programmer's Guide to CLOS. (Keene 1989), and Understanding CLOS, The Common Lisp Object System
(Lawless and Miller 1991)

Chapter 2

Music and Mathematics

21 Sharing the numbers.

Before looking in more detail at the relation between music and mathematics, it is useful to
consider this from an historical perspective, in order to find common thoughts and ideas to explore in
our research for a link between these two phenomena. Amongst others, Pythagoras (Ancient Greece,
¢. 570 — c. 495 BC) and his monochord is one of the first and most well known examples: “zu diesen
Philosophen — vor Sokrates — gehoren auch die Pythagoreer, eine Gruppe von Denkern, die sich um
500 v. Chr in Unteritalien um Phythagoras aus Samos geschart hatte. Die darstellung der Zahl als
Urgrund des Seins in all seinen Erscheinungsformen - so auch der Musik — gehorte zu ihren zentralen
Anliegen.” (Morbach 2004, p. 26)" This idea placed Music in the same group as Geometry and
Arithmetic, the two latter ones nowadays part of what we define as Mathematics. Sharing this
common ground of Mathematics, from antiquity up to the late medieval period, was common practice.
This practice was reflected in the (early) medieval ordering of the scientific world into the group of the
seven so called free or liberal Arts (the word Arts, has its origin in the Latin word for knowledge and
skills: Ars™).

Isidore of Seville (c. 560-636 AD) described in his Etfymologiae®' this system of division and ordering

of the seven liberal arts into more detail. In accordance with older Hellenistic** views, Music has been

put into the same group (as described in Book III), as Arithmetic, Geometry and Astronomy. Grammar
(Book I), rhetoric and dialectic (or Logic), both from Book II belonged to the Trivium*. The first four

were grouped into the Quadrivium (see Table 1, page 6). This ordering system of the Liberal Arts

(Sciences) continued to exist during medieval times and only changed during the Renaissance® period.

19 «Also this group of philosophers before Socrates, belongs the Pythagoreans: a group of thinkers which
somewhere around 500 BC formed a group in Southern Italy around Pythagoras from Samos. The representation
of numbers as a foundation of being — also for music — belongs to their central thoughts and beliefs.”
(Translation: the author.)

For further reading about Pythagoras and the Pythagoreans: http://plato.stanford.edu/entries/pythagoreanism/

» Isidor of Sevilla states: “Kunst heisst ‘ars’, weil ihre Ausiibung nach festen (artus) Regeln und Vorschriften
geschieht.” (Morbach 2004, p. 36). Translation: “Art is called ‘ars’ because their practice is according to strict
rules and regulations.” (Translation: the author.)

2! The Etymologiae (c. 600-625 AD) can be seen as a precursor of what later became the encyclopaedia. It is a
bundling of twenty books describing all knowledge of the known World, and ordering it into specific topics
(Sevilla 2008, 830).

22 The Hellenistic Age is stated as roughly the period between the death of Alexander the Great and the
establishment of the Roman Empire (323 BC — 31 BC) (Perry et al. 1989).

2 The Trivium are the first three skills acquired at medieval Universities. The Quadrivium (four) skills were
taught after the Trivium (Morbach 2004).

?* The Renaissance is a cultural period between the 14" and 17" century in Western Europe. It involved a major
shift in worldviews about Arts, Science and Society. (Perry et al. 1989)

Johannes Kepler (1571 — 1630)* succeeded in placing three of the four Liberal Arts more closely
together:

The seven Liberal Arts
Trivium: 1 Grammar

2 Rhetoric

3 Dialectic (also called Logic)
Quadrivium: 4 Arithmetic

5 Music

6 Geometry

7 Astronomy
Table 1 The seven Liberal Arts grouped into Trivium and Quadrivium.

Geometry and Astronomy were placed under the leading role of Arithmetic (Mathematics). Music was
more closely associated with Astrology (in those days not clearly separated from what we nowadays
define as Astronomy). At that time Music became the ‘Music of the Spheres’ transformed and strongly

influenced by the idea of ‘Harmonices Mundi’*

as stated by Kepler. These newly revealed harmonic
proportions between celestial bodies (sun and planets) and their movement in the firmament were
widely accepted as a fundamental law. Apart from everything being related in a harmonic way, there
was no new fundamental insight into what Music as a natural phenomenon could really be. As a
consequence, Music was no longer accepted as belonging to the same domain as Mathematics but
‘drifted’ into the group of the performing Arts. Renewed interest in the calculable part of Music came

with Mozart’s “Musikalisches Wiirfelspiel”*” and the introduction of Music Machines (automata). The

latter ones are not really to be taken seriously: they were built for entertaining purposes only.

Only with later scientists as Hermann von Helmholtz (1821 — 1894) this shifted to a scientific
(empirical) foundation of music and sound according to the laws of physics, as described in his Book:
On the sensations of Tone (Helmholtz 1885). The early 20" century saw the development of a much
more scientific foundation for the natural phenomena of sound, in particular through research into
telecommunications as was done in the USA by Bell laboratories® and subsequently being explored
for applications in music. After World War II, with the more widespread introduction of computers, a
renewed interest in the calculable definition of music was revived. The previously introduced 12-tone

composition techniques by Arnold Schonberg (1874 - 1951), as described in his book Harmonie

2 More can be read about Johannes Kepler at the site of the Stanford Encyclopedia of Philosophy:
http://plato.stanford.edu/entries/kepler/

 Harmonices Mundi is the title of a book published in 1619 by Johannes Kepler.

7 A ‘Musikalisches Wurfelspiel” was a well-known practice to compose music according existing rules and only
‘randomize’ the moment when it should be used in the composition.

“Perhaps the most famous historical example of algorithmic composition is W. A. Mozart’s Musikalisches
Wiirfelspiel — a dice game for assembling minuets out of a set of pre written measures of music. The sequence of
measures was determined by a set of dice throws.” (Roads 1996, p. 823)

% For further reading about Hermann Helmholtz and the importance of his book: On the sensations of Tone:
http://plato.stanford.edu/entries/hermann-helmholtz/

% One of the well known’ inventions of the Bell Telephone Laboratories Inc., is the transistor. The official
website from the company: http://www bell-labs.com/about/history-bell-labs/ with other historical inventions.

Lehre™ (Schoenberg 1978, 1911), had already opened the field of parameterisation of music.
Extension of this view with more strict serial composition techniques®' and even by further
formalizing of compositional techniques was done by the composer lannis Xenakis (1922 —2001), as
demonstrated in his §7/4 (= stochastic) composition for String quartet (1956 — 1962). This process of
formalisation of the compositional process in an abstract, mostly mathematical process description, is
described in his book: Formalized Music (Xenakis 1971). This total formalisation of the composition
process based on Mathematics and logical rule based assumptions about what the nature of Music is,
made a direct translation into a formal computer language possible. Xenakis did this by using Set
theory, Stochastic Processes and Game theory as the core of the compositional process instead of
relying on the older ‘rules’ of Tonal Music. (To what extent the calculated output is used directly and

unaltered, or that it has been ‘edited’ by hand is not always clear.)

Other, more rule based approaches of formalisation have been done by Lejaren Hiller and Leonard
Isaacson in their String Quartet #4: Illiac Suite’* composed in 1957. It has been widely acknowledged
to be the first algorithmic music composition composed on a digital computer: Illiac I (Roads 1996).
From the sixties on, computers became more readily available and purposes apart from doing
scientific calculations were researched. With the introduction of even smaller and cheaper Personal
Computers (PC’s) in the late seventies and early eighties of the 20" Century, the development of
software for doing research or to create new sounds and music compositions extended in many new

and different directions.

2.2 Adding a certain ratio: Pythagoras, Birkhoff and Max Bense.

One of the major misconceptions about Pythagoras is the assumption that he would have said that
everything is derived from numbers. However, this does not seem to be the case:
“I have learned that many of the Greeks believe Pythagoras said all things are generated from number.

The very assertion poses a difficulty: How can things which do not exist even be conceived to

3% Also known by its English translation: Theory of Harmony.

3! Serial Music or Serialism can be defined as a strict and rigid parameterization of Music. Parameters as pitch,
duration, loudness and timbre are fixed series of values. Provided as fixed entities and ordered in time by other,
mostly random processes. In-depth research on behalf of these processes and their implication for the aesthetics
of Serialism are described in: Serial Music, Serial Aesthetics by M. J. Grant (Grant 2001).

32 The Illiac Suite for String Quartet (1957) is composed in four movements, involving several composition
techniques. Ranging from generating a ‘Cantus Firmus’ up to the processing of Markov chains. It is widely
accepted to be the first electronically generated composition based on compositional rules programmed (in a
computer language) on an electronic computer (The Illiac I). (Loy 2006) (Roads 1996)

Hiller and Isaacson state, (originally from: Hiller, Lejaren and Leonard Isaacson 1959 Experimental Music, New
York): “The process of musical composition can be characterized as involving a series of choices of musical
elements from an essentially limitless variety of musical raw materials. Therefore, because the act of composing
can be thought of as the extraction of order out of a chaotic multitude of available possibilities, it can be studied
at least semi-quantitatively by applying certain mathematical operations deriving from probability theory and
certain general principles of analysis incorporated in a new theory of communication called information theory.
It becomes possible, as a consequence, to apply computers to the study of those aspects of the process of
composition which can be formalized in these terms.” (Loy 2006, p. 360)

generate? But he did not say that all things come to be from number; rather, in accordance with
number - on the grounds that order in the primary sense is in number and it is by participation in order
that a first and a second and the rest sequentially are assigned to things which are counted.” (Waithe
1987,p 12)

More evidence for this thesis can be found in work from the Greek philosopher Theano of Crotono™:
“Theano is saying that when we ask what is the nature of an object, we can reply either by drawing an
analogy between that object and something else, or we can define the object. According to her,
Pythagoras meant to express an analogy between things and numbers. This is the concept of imitation:
things are like numbers. By its participation in the universe of order and harmony, an object, whether
corporeal or not, can be sequenced with all other objects and can be counted. Things can be counted in

accordance with number, the primary sense of which is ordering.” (Waithe 1987, p 13)

If the two previous citations are kept in mind, it is reasonable to presume that Pythagoras meant that it
is possible to substitute integer numbers as abstract symbols for things. This can be seen as one of the
first approaches of symbolic manipulation and acts as a core foundation for mathematics. By using
this idea as an axiom® (postulate or assumption) he made it possible to set the symbols (integer
numbers) in relation to each other, thus defining ratio as a proportional ratio symbolised by the
mathematical operand of dividing (e.g. a:b or a/b)*’. Pythagoras himself did introduce this thought in
his famous idea about the Monochord: where every overtone and thus musical scales can be derived

from the initial fundamental tone divided by a specific ratio™.

By freeing up this imaginary ‘ideal’ world from its natural context and transforming it into an abstract,
symbolic world, the next step of introducing this postulate into the world of sound and music is now
much easier. Nowadays, this kind of substituting ‘things’ with numbers is no longer an abstract

philosophical thought: every computer simulation’” on a computer is based on this assumption®®. This

33 Theano of Crotono (6™-century B.C., Greece).

For further reading: http://plato.stanford.edu/entries/pythagoreanism/#women

3* An Axiom is a fundamental starting point, or presumption for a theory. From The Oxford Companion to the
Mind: “The Aristotelian definition of an axiom is that it is a principle common to all sciences, which is self
evidently true (and thus knowable a priori) but incapable of proof.” (Adrian et al. 1987, p. 67)

“A postulate on the other hand is a principle specific to a given science which is assumed without proof and
whose truth may not be self-evident.” (Adrian et al. 1987, p. 67)

35 In more detail: both notational forms imply a different idea: *:” stands for more proportional opposites. And
the /> implies a strict divide, which taken strictly, has a different meaning.

3 Pythagoras used the Monochord to illustrate the proportional properties, expressed in integer numbers, of a
given fundamental (or keynote) in ratio with an overtone or partial. For example, for finding the octave the string
needs to be halved in length (2:1). By using only a quarter of the original string length the second octave above
the fundamental can be found. Further division can be used to find all of the tones used in the diatonic scale.

37 Computer simulation is a collection of algorithms (and equations) in which a real-world process description is
modeled. In order to obtain knowledge about the real life situation, running the model or simulation does
calculations. Also, as defined in The Wordsworth Dictionary of Science & Technology: “Simulation (Comp.)
Method of studying the behavior of a system by using a model of the system and processing it on the computer.”
(Heckl et al. 1988, 1995, p. 816)

38 There is one catch here that needs to be mentioned: Computer simulations are not only about quantifying
things into numbers but also about processing (algorithm) calculation as well.

is especially the case in the direction of physical modelling in computer music, where physical
processes (e.g. string vibrations) and the properties of the material (e.g. wood, iron etc.) are used for
simulating the physical behaviour of those components according to all physical processes involved.
At this point one could ask if music is by nature a language or if there is another underlying - hidden -
process or organisational structure. The utmost consequence of either approach is that it is now
possible to see Music as a ‘chain’ of context sensitive symbols that can be replaced or represented by
other symbols: numbers, notes, language etc. This direct form of representation of properties of the
(visual and auditory) Arts is something that is also seen in the work of the German philosopher Max
Bense (1910 — 1990)*. Although Bense’s initial idea is based on aesthetics derived from linguistics
and the visual arts, there are many parallel ideas for structure and organisation of musical material to
be found. (In a later work he addresses music in more detail.) Two important views in his philosophy
can be found. First is the idea about using entropy® (of the art work) as an important factor for the
computability of aesthetics in art. Initially derived from George David Birkhoff'' (1884 — 1944) an

American mathematician, Max Bense adopted one of his ideas as expressed into the equation:

0

= E , where M is the aesthetic measure, O is the amount of order and C is complexity.

M

Equation 1 Birkhoff's equation of the aesthetic measure.

Originally proposed by Birkhoff, where M is the aesthetics measure which can be calculated from
Order (O) divided (ratio) by Complexity (C). This formula (see Equation 1, page 9) makes a
calculation of the measurement of aesthetics possible and has a direct connection with a physical
entity from thermo dynamics: entropy. While CACE4 is a computer program, its behaviour and output

are strict logical constructs. Therefore, all operations are inside the logical domain.

If Bishoff’s equation (see Equation 1, page 9) is then applied as a measure of the desired artistic output
and the way CACE4 operates, it can be seen that the Order (O) should be high and the Complexity (C)
has to be low, in order to obtain a high value for the artistic measure (M).

This equation strictly applies to the main goal of CACE4: to find order, and therefore restricting chaos

to achieve an artistic output with a high value of M: the Artistic Measure. If order (O) is measured

% On the official Stuttgarter-schule site of Max Bense: “Max Bense (1910-1990) studied mathematics, physics,
geology and philosophy at the Bonn University where he gained his Ph.D. + Sc. in December 1937. Already as a
student, he began to publish. “ (Walther 2000). Max Bense’s works focuses on topics as semiotic, aesthetics,
cybernetics and art. The official Max Bense site: http://www.max-bense.de

0 Entropy is defined as a measurement of order-disorder in a given system.

“In chemistry, entropy is a measure of the ways in which energy of a molecular system is distributed among the
motions of its particles, its thermodynamic probability. In information theory, entropy is a measure of the ways
in which the information of a signal system is distributed among its communications.”(Loy 2006, p. 345)

*I'In 1933 Birkhoff published Aesthetic Measure, a mathematical theory about aesthetics.

with the equation Bishoff proposed, then more order can be achieved by the use of CACE4 objects, as
they are tools for finding order (in data) with Information Retrieval and data mining techniques. They
act otherwise as tools for enforcing order by applying mathematical functions, thus also increasing
order in the (pre-) musical (artistic) result. This should result, all according Bishoff’s equation, in a

higher value of M, the Artistic Measure.

Bense’s second idea about generative aesthetics: that the aesthetic measure of a work of art based on
these principles (of generative aesthetics), should be calculable according this formula*’. Bense gives
a precise definition of his idea about generative aesthetics: “Generative aesthetics therefore implies a
combination of all operations, rules and theorems which can be used deliberately to produce aesthetic
states (both distributions and configurations) when applied to a set of material elements. Hence
generative aesthetics is analogous to generative grammar, in so far as it helps to formulate the

principles of a grammatical schema-realizations of an aesthetic structure.

Any generative aesthetics that leads to an aesthetic synthesis must be preceded by analytical
aesthetics. This process is responsible for the preparation of aesthetic structures based on the aesthetic
information found in given works of art. In order to be projected and realized in a concrete number of
material elements, the prepared aesthetic information must be described in abstract (mathematical)
terms. At the moment there are four different ways of making abstract descriptions of aesthetic states
(distributions or configurations), which can be used to produce aesthetic structures—the semiotic
(employing classifications) and the metrical, statistical and topological methods—the latter three are
numerically or geometrically orientated ” (Reichardt 1971, p. 4)**. To summarise Bense’s philosophy:
Any generative aesthetic model which leads to a new synthesised aesthetic product (a work of art)
should be preceded by any type of aesthetic analyses based on structures and described in abstract,

mathematical terms.

This provides one with an aesthetic manifest for use in the world of informatics and formalised music.
The interesting conclusion is that in 2500 years of western philosophy, the fundamental idea as stated
by Pythagoras, of substituting numbers for (real world) objects, is even more valid then ever. This is

even more emphasised with the now widespread practice of using computers in the world of music.

23 How is this idea incorporated in the design of CACE4?

The question about how this idea is incorporated in the design of CACE4 can be answered by

taking the previously described, rather strict mathematical approach of substituting the properties of

2 The formula demonstrates that using low values for the amount of order in a piece of Art but also combined
with a low value for complexity gives a rather high value for the aesthetic measure. (The formula was later
adapted: the divider operand was replaced with a multiplication. This implies that with small numbers for the
values of O (order) and C (complexity) one still has a small number for M (Aesthetic Measure).

3 This citation is from: http://www .computer.org/Bense_manifest.pdf (page 4). The original is from Max Bense
and was published in: “Cybernetics, art and ideas by Jasia Reichardt (Reichardt 1971).

10

musical notes by numbers as the fundamental idea of CACE4. By using this analogy, one is not
limited to fundamental musical properties such as duration, volume/dynamics, start-time and timbre.
This model is not fixed so that other properties as coordinates in space (Cartesian and polar),
movement (direction and speed) and timbre (other parameters of timbre such as partials and f0**) can
be added to this model. The other important software design idea was to create a direct translation of
the data into a 1 or 2 dimensional numerical stream of numbers, without the use of an underlying
musical language. This gives us the ability to approach every selected topic as such: as a single
delimited process with specific methods, described by the mathematical description of the process in a
formula and translated into an algorithm. These two basic ideas can be seen as the core strategy for
designing CACE4 and all of its functionality into a computer program suitable for doing analysis on
data and creating Musical content by found mathematical constraints.

The decision to qualify the phenomenon either as language or to perceive it as a numerical stream is
initially an arbitrary one. By doing so however, certain pitfalls can be avoided about a qualified
system for representation of Music as a (formal) language*’. By taking a more mathematical approach
for analysing data as the core strategy, as suggested by Max Bense in his thesis about generative
aesthetics and by ‘replacing’ musical properties (e.g. pitch, dynamics, duration etc.) with (real)
numbers numerical Mathematics can be used to alter these properties. Furthermore, in creating blocks

of musical data and saving them in a file, the output can be worked with in musical compositions.

* Further parameterization of the timbre can be obtained by incorporating formal models of timbre description
of the domain of DSP.

* On the other hand, the open design of the CACE4 environment allows one to create a separate module solely
based on representing Music as a specific system of language representation.

11

Chapter 3

From MIR to IRM

As the title of this thesis “From Music Information Retrieval to Information Retrieval for Music.’

suggests, the goal is to find useful tools in the domain of mathematics and informatics for musical

purposes. In this chapter some aspects of the development of algorithmic music composition are

looked at and, in relation to this, how IR (and many more techniques) is used for creating musical

tools.

3.1 Definitions.

In this thesis certain terminology will be taken into account. In the description of the several

CACE4 objects the following terminology will be used:

CACE4 name Object

Input list, input stream

Output list, output stream

Generator

Manipulator

Algorithm
<button-name>

CACEA4 processing chain,
processing and strategy

anylispfunctionname()

defgeneric()

Indicates one of the CACE4 objects’. It is a direct representation of the process and
presents itself (to the user) with a clear Graphical User Interface (= GUI). This is a
CACE4 object and has a representation as a small colored box in the CACE4
Project window, and it’s own specific GUI. It is also referred to as a CACE4
Modules.

The two can be seen as the same. (Although the use of the word stream is in the
context of CACE4 a bit ambiguous. A stream will normally be seen as a more or
less continuous flow of data.). The input list contains the original input as a 1
dimensional stream of numbers.

Are just like the input list synonyms and are used for saving the calculated output
for further use by other CACE4 objects.

The generator objects are at the beginning of every strategy in a CACE4 process
window. They are needed to get initial data for further processing done by other
CACE4 modules. The input of these Generators do either consists files or
calculations.

Manipulator modules are the core business of CACE4. They take care for
analyzing and processing. Therefore transformation of the input data in the desired
output data or generating data otherwise is possible by either changing the data

Is a formal description of a process, in order to obtain a specific result (Mostly
programmed in a computer language).

Will be used for naming buttons as they show up as part of the GUI. This will
mostly be accompanied by a figure number as reference.

They all apply to the chain of connected objects visual in the processor window.
The CACE4 objects are connected by lines (arrow-objects): visible in the GUI and
indicating with their arrowheads the direction of flow of the processed data.

All other LISP functions, either from CL or introduced in CACE4, will be
displayed in italics and ends with parentheses.

A specific LISP macro* to define generic functions or methods. This is a very
useful tool for bringing similar methods, though belonging to different Classes,
together”’ (Steele 1990, p. 827).

*6 The function of a macro, as defined in Common Lisp, is to write functions and methods on a more general
level of encoding. Macros are not functions in Common Lisp and should not rely on the execution of specific
system variables. Their purpose therefore, is to write more general code before the process of compilation takes

place. When executed at run time, different types of execution of the code are possible. For example, the use of a

variable can be declared as one of many types: floats, shorts, lists, arrays, strings (etcetera) and can be

recognized and accordingly dealt with at run time. This interchangeability of the different types makes it a very

powerful software developer tool.

’

12

defmethod() A LISP function for defining a method for an existing class (member) (Steele
1990, p. 838).

defclass() A LISP function for defining a new class. In the LISP coding this pre-defined class
will be used with (make-instance <class-name>) to create an instance of the
original class. All functionality of the class and its Methods will be inherited
(Steele 1990, p. 822).

[y] Number ranges of indicated parameters. Can either be used for indicated input
ranges for text-edit fields (GUI), or indicates a range of output (domain).
Musical functionality — pitch, These musical properties are used as well known musical terminology; no new

dynamics, volume and duration terminology has been introduced.
amongst others.
Table 2 Used terminology and definitions.

3.2 Taking a look at algorithmic music composition.

In order to make use of these techniques from IR, statistics and data mining, one must first
describe and define what these rules are, how to apply them and what use they have in music. Is it
possible to create a formal description of musical functions that can be used to symbolise and thus
could replace the underlying structure for creating music?

Most rules developed in particular to the constraints of harmonic progressions, voice leading and
melodic structures in tonal music, cannot be adapted sufficiently to atonal music and music where
parameters other than pitch are being used as a structural basis for a composition (for example,

spectral music*).

If music is to be perceived as ordered (distributed) data over time, according to a mathematical
description, and processes inside a system (music) are developed over time, can a field in the domain
of mathematics be found which deals with these descriptions of these processes and their system, and
apply it as a model for composing music? Probability as a mathematical description is one of the
possibilities, as Temperley states in Music and Probability: “ If music perception is largely
probabilistic in nature (and I will argue that it is), this should not surprise us. Probability pervades
almost every aspect of mental life-the environment that surrounds us, and the way we perceive,

analyze, and manipulate that environment.” (Temperley 2007, p. 2)

Xenakis offers a mathematical (probability calculus) solution, as stated in Formalized Music: “But

everything in pure determinism or in less pure indeterminism is subjected to the fundamental

7Tt has been defined in ‘Common LISP The Language — second edition. (Steele 1990) as: “The macro
defgeneric() is used to define a generic function or to specify options and declarations that pertain to a generic
function as a whole.” (Steele 1990, p. 827). Grouping of functionality on the programming level contributes to
functions and methods, which are capable of operating automatically on very different types of variables. As a
computer programmer: it frees the process of software development from the painstaking checking of all
variables (or in LISP terminology: arguments) of functions and methods, as this will be done by the Macro as
defined.

* Spectral music emerged in the 1970’s and is defined as music where pitch, tonality and harmony are no longer
defined in the traditional, tonal sense. Instead it mostly focuses on the use of psychoacoustics and spectral
changes applied in the domain of physics by using frequency, amplitude and timbre. See for more details on the
wide variety of spectral music: URL: https://www.york.ac.uk/music/undergraduate/modules/2013-14/spectral-
music/

13

operational laws of logic, which were disentangled by mathematical thought under the title of general
algebra. These laws operate on isolated states or on sets of elements with the aid of operations, the
most primitive of which are the union, notated U, the intersection, notated (), and the negation.
Equivalence, implications, and quantifications are elementary relations from which all current science
can be constructed. Music, then, may be defined as an organisation of these elementary operations and

relations between sonic entities or between functions of sonic entities.” (Xenakis 1971, p. 4)

As a consequence, Xenakis transforms the compositional process by using probability and statistics as
rules for composing music, as stated in Formalized Music: “I originated in 1954 a music constructed
from the principle of indeterminism; two years later I named it “Stochastic Music.” The laws of the
calculus of probability entered composition through musical necessity.” (Xenakis 1971, p. 8) The last
remark of Xenakis, of making probability enter the composition, has to be understood as using
probability as a formal set of rules to be applied to the compositional process. It can only be
understood as an artistic decision deeply rooted in science, based on the assumption that music is a

physical phenomenon.

At the same time, other systems of formal composition were proposed by composers such as Pierre
Barbaud in his book Initiation a la composition musical automatique (Barbaud 1965), based on matrix

probability calculations.

As more composers gained access to the computers in the seventies and eighties, in particular due to

the development of personal computers (PCs), the vision broadened of how music could also be

defined as sets of data, algorithms and mathematical equations and using these as an alternative for

more traditional, tonal and harmonic rules. Approaching the domain and the process of composing on

a more abstract level led to many analogies between other areas of science and research, as

compositional processes for creating music*’. One of these quickly evolving other scientific research
150,

areas, is the domain of Information Retrieval and the science of 'Big Data"": a vast and rapidly

growing domain with an expanding community’'. There is a common interest and, to a certain level,

* One of these techniques with a parallel in a different scientific domain is the direction of music genetic
programming based on the associative translation of concepts from biology as DNA, and DNA sequencing as
carriers of musical information. The information of the DNA can be altered over time, hence mimicking DNA
damage and the processes of mutation and evolution. This model has been copied as the compositional process
for evolving music over time (for more information see URL:
http://elib.mi.sanu.ac.rs/files/journals/yjor/39/yujorn39p157-177 .pdf).

% “Big data essentially means datasets that are too large for traditional data processing systems and therefore
require new processing technologies. As with the traditional technologies, big data technologies are used for
many tasks, including data engineering. Occasionally, big data technologies are actually used for implementing
data mining techniques. However, much more often the well-known big data technologies are used for data
processing in support of the data mining techniques and other data science activities,...” (Provost and Fawcett
2013, p. 8).

>! In the domain of Music and Information retrieval: ISMIR (= International Society for Music Information
retrieval) is the organization involved in coordinating this rapidly growing area of new music research. Mailing
lists for information exchange and organizing a yearly Conference is one of the tasks of ISMIR. For more
information, see http://www.ismir.net for details about the activities of the organization.

14

overlap between these areas in approaching the problem of the ‘unknown’ data. To have a priori no
knowledge of the data makes it rather easy and legitimate as well, to use any kind of data to be
analyzed by these techniques. Whether it is musical material, growing algae or the latest information
of the global economy as the amount of data produced every day by the financial markets, it can all be
approached as a single stream, where only the underlying and intrinsically hidden structures are in the

data set itself.

Recapitulating, it can be concluded that by defining music as a physical phenomenon (as Xenakis and
Temperley previously stated), these rules of probability do apply and are fully functional. Therefore,
by making use of IR, statistical analysis and data mining as our set of rules’* to be applied for creating

music, CACE4, as a compositional tool, is defined within the limit/boundaries of this definition.

Focusing now on how to define a method for comparing several methods for their usability in a
musical, compositional context, leads to the definition of a set of (four) questions, which first need to
be answered.

3.2.1 Firstly, before coping with (large) amounts of data, are there any readymade tools and techniques
from the domain of IR one can use?

3.2.2 Secondly, can we group the different mathematical approaches together and use them as a
strategy for analysing their output in a compositionally useful way?>®

3.2.3 Thirdly, is there a possibility of defining statistical algorithms in a more (traditional) musical
approach: using them as musical entities? To be more specific: are there analogies between
mathematical formulae and musical functionality?

3.2.4 Fourth and finally, is it possible to tell something more and directly derived from the
organization of the data itself, about so called meta-events such as the structure and style of a musical
composition? Can we therefore conclude that, to a certain extent, the way the data is organized results
in specific characteristics directly noticeable on the meta-level of style and structure of the

composition? The latter question will be without doubt the hardest one to answer, if at all possible.

In order to answer these questions the domain of applied Mathematics and Information Retrieval will
be looked at.

For the first question (3.2.1), in the case of handling (large) amounts of data and whether there are any
readymade tools for processing: mathematics and especially the field of statistics give a well defined
set of possible solutions to gain knowledge about, mostly hidden, connections and correlations

between different data sets. One technique for solving this problem can be found in the area of

52 A user of the CACE4 has to develop a strategy in a CACE4 Processor object by using several CACE4 objects
in a chain (see section 5.8.1, page 101, for further details), and as such, compositional rules have to be translated
into a strategy in a CACE4 Processor window.

53 All of this without intermingling too much with the original values of the data set, since otherwise it may well
be possible that important underlying numerical relationships could be disturbed before they have been detected.

15

correlation calculation, used specifically for finding correlation between initially unrelated data sets.
Other tools from the domain of statistics, such as linear regression and histogram analysis, have
different approaches in finding useful information from the data (tendency and grouping). From the
domain of cluster analysis, algorithms can be used for detecting multiple clusters and their distances in
a set of data. Hierarchical Cluster Techniques as k-means and Expectation-Maximisation (EM)
provide these tools. A tentative conclusion can therefore be made, that readymade tools are available

for handling data sets.

For answering the second question (question 3.2.2), on whether it is possible to find functional
groupings of methods from IR and to use them as an analogy with a specific musical term and
functionality: these higher organisation levels in music need to be compared with the functionality of
the IR methods provided. This could be hard to achieve since not every musical term defined as such,
can be copied into an existing IR technique. CACE4 should therefore be restricted and focus on only a
few of these music functions, such as pitch, dynamics, delta start time and duration, plus others on a
more higher level of organisation as building blocks for larger sections. The structure of these larger
sections as (pre-) musical output, should not be ordered around musical terms such as structure (form)
in a strict classical tradition (for example sonata and fugue), but should reflect structures found in data

files and create new possibilities for composing structures.

As such, CACE4 is not a music generator focused around the generation of output according to these
musical terms. Instead, it can be seen as a variable music generator, which could calculate a single

note or many thousands at once.

With regard to the third question (question 3.2.3), on whether a meaningful comparison is possible
between these newly grouped processing algorithms and older, more traditional musical approaches: it
becomes apparent that CACE4 is much better suited for developing a strategy as an analogy to
existing techniques of aleatoric compositional processes. It can be seen as a ‘Musikalisches
Wiirfelspiel’, based on extended use of statistics and data mining as a means for creating music. The
processing of the data makes it well suited for serial composition techniques, since the development

and progress in the music is replaced by calculated output of mathematical equations and functions.

Without, for now, the implementation of coded musical knowledge, these methods for analyzing the
input data are focused on solely, before the last question (question 3.2.4) about style and structure of a
music composition can be answered. This means that the complex puzzle of a musical style cannot be
solved in a direct way. Smaller parts however, acting as smaller building blocks of musical style, can

be isolated and recognised™. This gives them a direct practical implication in the processes of

3% Certain properties as density, give information about distribution of an amount over time. If reflected in the
domain of Music; if the density of pitched notes or sounds are high, the total perception of the material could be
perceived with the following qualifications: dense, quick or with a high tempo marking. This is in contrast if the
same material would be presented at a much lesser density: sparser, slow or with a low tempo marking.

16

composing. Atonal music based on formal (= mathematical) process description and not defined music

in other terms, is better suited for finding these mathematical building blocks.

Taking these limitations of CACE4 into account, one could say that as long as a part of style is defined
as a ‘gathering’ of discrete characteristics then certain aspects can be detected, isolated and analyzed
by the previously described IR techniques. By using several techniques and by putting them in a
suitable sequential order, a more complicated compositional process description can be achieved.

As such, by connecting the musical usability to creativity, it is possible that by using these ideas as

another way of composing music, a different style of music could emerge.

33 Creating musical tools from common Information Retrieval

techniques.

Before starting to describe (see Chapters 4 and 5 for more detail regarding analysis, design and
development of CACE4 objects) the details of the modules developed, one needs to take into account
whether it is possible to create musical tools from Information Retrieval techniques, statistics and data
mining practice. What first comes to mind when considering this is the legality of the implied analogy
between the two domains in respect to handling the data. Can there be a sensible translation of music
and its representation to a representation usable by IR techniques (and vice versa)? Furthermore, does
the result from this approach calculate material usable for creating interesting musical material?

By using SMF as input, the data can be worked with as long as the MIDI functionality of the original
data in the SMF is respected. In CACE4 this has been accomplished by creating an internal
representation of the (related) data. The MIDI representation of Timing (MIDI Clock Ticks, Tempo)
and note representation (keys/pitch, velocity/dynamics) must be taken into account. If this translation
can be made without altering their representation in the MIDI domain, a translation to an internal
representation is possible. The problem has now been isolated and thus the Information Techniques
implemented in CACE4 can be worked with. The same problem, but in retrograde, occurs by
translating the data back, after working with the selected Information Techniques. By grouping data
with the same MIDI representation and to maintain their internal CACE4 representation, it is now
possible to use the IR Techniques only on the functional groups (e.g. pitch, velocity etc.) as desired.
In order to keep track of these functional groups, sequential labelling should be done to keep the
context (= internal representation) at all times. If this method of translation (of the SMF) is adhered to,
then a positive answer can be given to the question.

What occurs however, if other (text) files are used as input? In the case of using Spear partials text
file, the result of a DFT (Discrete Fourier Transform) of an audio file can be read in a particular

format. (This opens up the possibility doing some analysis in the frequency domain)

17

Analysis of the audio file: Piano.wav done by Spear generates a Piano partials.txt file in the following
format:

par-text-partials-format

point-type time frequency amplitude

partials-count 24

partials-data

0100 0.001301 1.228546

0.001301 1518.669800 0.001688 0.020790 1544.828003 0.002815 0.028885 1545.946289 0.004013
0.038296 1552.878174 0.004992 0.050129 1556.715454 ...

The above text (in italics) is the first few lines of a SPEAR partials text file. After point-type (second
line of the text), time, frequency and amplitude are found. This is the order of reading the file data.
After partials-data starts the read in: time (in milliseconds, the exact time interval depends on the
precise Sample Rate per second), frequency (in hertz) and the amplitude (domain: [0.0,...,1.0]). This
SPEAR partials text file will be automatically read in and converted by the CACE4 program.

For all other text files some work has to be done in order to prepare a file. In the case of files in .csv or
Excel files being used: get rid of all tabs and “,” and other extra characters. The numbers need to be in
pairs of numbers (x,y) orientation, and saved in a text (<filename>.txt) file format.

Although the SPEAR text files are based on the analysis of a signal with the aid of FFT’s and as such
belong to the domain of Digital Signal Processing (DSP), the same type of consistency in processing
as previously realized with the Standard MIDI files (SMF), can be achieved by using the same
principles of sequential labelling™. By using a strict working method as described above, it is now
possible to incorporate more elaborate ideas about musical functionality. If abstract ideas such as
chord-builder, melody-creator or melody-imitator are taken into account, then musical imagination is
the only limitation. This is demonstrated by the development of the CLUS (Clusterer) object (see
section 5.5.1, page 54) and with the implementation of the Correlator (see section 5.5.5, page 67),
where certain musical functionality can indeed be simulated (e.g. The Clusterer can be used as a kind
of chord generator). In the case of STAPS (see section 5.5.4, page 64) and STAM objects (see section
5.5.2, page 56) however, abstract mathematical processing has no direct analogy in the world of Music
and as such, can only be used in a statistical way, not related to a real musical process.

By using these two approaches, creating abstract musical tools from common Information Retrieval
techniques is indeed possible and can be used as one of the CACE4 objects needed for creating the

correct strategy for obtaining the desired musical result.

> CACE4 in the version: 0.5.x has no possibility for using a context. For now the user must remember which
entry (dimension) should stand for which musical parameter. Taking these limitations into account a future
version of CACE4 will have this option. See for more details Chapter: 7.2 (page 129), Future development plans.

18

Chapter 4
CACEA4: design and analysis

This chapter discusses the design of CACE4 as a music composition computer program, focused on
the use of statistics, IR and data mining as compositional tools. It incorporates many ideas about
software functionality and software design. The main goal for the design should be the original idea
about the functionality of the program: its intended purpose and use as it is reflected in the original
design of the software package. This implies a certain context in which one has to operate. By not
using a (music) language-based approach, one must decide what else to use as a fundamental core-
process of information exchange. CACE4 uses numerical streams, instead of other techniques such as

an Augmented Transition Network.

Although ATNs are constructs that can also be used to create atonal music, they are, in the case of
CACEA4, not applicable while the definition (core engine) and functionality is not based on a Music
language construction. The internal data structure, as communication between independent software
components (CACE4 objects), is restricted to a one-dimensional stream for applying (mathematical)
functions, therefore a construction of an ATN would not be necessary. These different approaches in

design will lead to different outputs and are thus an important factor in our design.

The two design criteria however, must first be defined. These are both artistic (Can we create musical
interesting material with it?) and technical (Which IT techniques are involved?). The technical criteria
provide the framework and determine the possibilities of translating the musical ideas into software.
For reasons of technical feasibility and to be able to develop the ideas for the program, different
existing development techniques have to be taken into consideration. Computer Programming
Language, Object Oriented Programming (OOP) techniques and Object Oriented Wrapper Class
design are a few to name. All these different criteria, with all their different approaches, have to be
taken into account in the early stages of the design and development of the software program. The
original goals of the software have to be translated into the design of the program, by means of the
technical (IT) design techniques available. This all distils into a design and a working method for

developing the CACE4 software package.

4.1 Design and development criteria of CACE4.

Although roughly based on an older composition program (CAC1 — 1996) and making use of
some previously programmed functions, the design of this new version has been from scratch. A new
LISP IDE with new tools and libraries for the GUI has been used. These tools offer to adapt different
approaches in program development and programming style. Keeping all these criteria in mind, they

now can be combined with the goal and create a workspace for design and development.

19

The four major design criteria:

Firstly: open-ended software design. As music is a ‘never ending story’, there should always be room

for new ideas about music, compositions and informatics (section 4.1.1, page 20).

The second criterion is: easily extendable and modular design. The most suitable approach is an

Object Oriented and uniform class design (section 4.1.2, page 21).

Our third design criterion focuses on educational purposes, in particular focusing on a graphical
display (GUI) so that students can get acquainted with (basic) concepts of statistics, mathematics,
informatics and music, where the focus is on software design and application programming (section

4.1.3, page 21).

The fourth and last criterion is to make it suitable for creating contemporary (acoustical and
electronic) compositions (section 4.1.4, page 22). Aesthetic criteria are involved and mostly these
criteria are difficult to qualify. They can therefore only be tested subjectively. In chapter 6, three
compositions actually created with the aid of CACE4 are analyzed and its artistic implications

discussed.

4.1.1 Open-ended software design.

As one of the first and major software design criteria, the software package should be an open-
ended computer program. The design of the object system and the GUI of the software is a so-called
framework application. This specific software development technique makes it possible to have a freer
design, based on the design principles of creating an (object-oriented) application framework’® first.
The engine and underlying core of this 'open' framework approach is based on the technique of Object
Oriented Programming. This makes further development and adaptation possible, quick and rather
easy. Because CACE4 is programmed in the computer language Common LISP, it can make use of
the CLOS (= Common LISP Object System) extension for this particular LISP dialect. Therefore, the
boxes (or cases) as they are shown in the program, do represent to a certain extent, object oriented
classes as well. Using this programming technique, the design of CAE4 is brought back to two major
classes, each with their particular GUI: one class for text displaying and another class for more
elaborated graphics and views. Both prepared as template documents, they now can be quickly
adapted to specific needs for newly added classes and their specific associated processes (methods and

functions).

% A framework application can be defined as an application build out of reusable software components (The
application framework). “Wrapped’ in these frames (mostly GUI based), objects can easily be embedded into the
application environment as such. See for more details about the topic:

http://www 1 .cse.wustl.edu/~schmidt/CACM-frameworks .html

20

4.1.2 Easily extendable and modular design.

CACEH4 is not based on a musical language description. The major design-criteria are based on a
'plain’', isolated and mostly mathematical description of a specific process. Every object should have
just one (or in one special case, more then one) input-stream represented as a list that contains
numbers. These numerical series - mostly in a one or two dimensional (x,y) number pairs format - are
combined into one newly created output-list after altering by processing and calculation. By doing so,
we have a single, uniform design based on isolated objects, represented by boxes (or cases), with one

input and one output connector’’.

DATA M:ri:-vgo:cr-P'.mc'-1?:25:3&—2*-:11:2\315

Maripulator=_

- o b
-

Figure 2 A Single CACE4 object box, in this case: a DATA Manipulator object with an Input (in) and an Output
(out).

Each box, as shown in Figure 2, can thus be seen as a separate process with its specific GUI suited
best for visualizing and working with the specific process. This framework approach does not a priori
exclude the use of a musical language description, but, if implemented, it should be programmed
instead as a separate process in one of these boxes together with their own unique set of tools. This
software development technique creates the possibility of fairly easily extending CACE4 and
incorporating other software libraries when necessary. Further incorporation of existing software
modules originally in C/C+ can be achieved with the use of the FLI (= Foreign Language Interface), a
module already available in the LISP environment (LispWorks - IDE), and as such, will be used for

incorporating existing C/C++ DSP libraries (e.g. AudioLAB2®).

4.1.3 Educational purposes.

" The only exception, for now, is the Merger object. The Merger object can handle up to 12 inputs (for further
explanation see Chapter 5.3.2).

% AudioLAB2 is a C/C++ Digital Signal Programming (DSP, see footnote 58, for a further explanation of DSP),
command line computer program, developed by the author, which was originally used for composing the
electronic 43-loudspeaker composition Plouton: a commissioned work (NFPK: 2010, for further information:
http://www nfpk.nl) of 25 minutes duration. It is a fixed media composition (24-tracks), about Minerals and their
chemical composition, and our perception of wealth (Ploutdn or Pluto are the Latin names of Hades: a Greek
God). This composition was specially made for the ZKM ‘Zirkonium’ loudspeaker setup (see for details about
the Zirkonium: https://www.zkm.de/zirkonium). AudioLAb2 has also been used in lectures about developing
DSP application software, for undergraduates of the Music Technology department of the University of the Arts
Utrecht, the Netherlands.

21

Another, but rather important criteria for the design and development of the CACE4 program is

for making use of it as an educational tool. Therefore the program should be well equipped and suited
for educational purposes. Whilst CACE4 has a strong visual component as intended by design, it
makes use of transforming and plotting the data in its own separated output in several ways, mostly
represented by graphics (different kinds of plotting techniques are used), or, in some cases, by text
fields. This isolated solution of representation of input and output data, best fitted for the process it
represents, makes it possible to make use of these processes as separated, boxed objects. Therefore it
should be useful, not only as a musical composition environment, but also to act as an educational
tool. As a lecturer at the University of the Arts, Utrecht, The Netherlands, I teach undergraduate
students in computer software development, mainly in the area of Music Processing and Music
Software Development and to a lesser extend DSP. This program, the way it is now, gives me the
opportunity to explain certain, sometimes rather complicated processes, initially isolated from other
areas. For example an algorithm as k-means (a Hierarchical Cluster detection algorithm), a common
and rather ‘simple’ technique from the field of Information Retrieval, will be initially presented as a
so-called ‘black box’ process. This way its use in a more musical context can be more quickly focused
upon without having to first gain the in-depth mathematical knowledge needed to understand how it
actually works and operates (this can/will be explained at a later stage). Other techniques necessary for
constructing musical output for listening, such as how to construct SMFs, is also, in this context,
another isolated problem. (The more technical details about the MIDI protocol and SMFs can be
explained later to the students.)
With the aid of a few extra modules such as DATA and Mathematical Transformer objects, it is now
possible to 'redirect' the obtained output to a more musical format. At the moment this is mainly done
in the SMF* format, although music notation in MusicXML (MXML) and LilyPond are, to a certain
extent, prepared and in the near future will be made available as new modules. The students will be

able to hear the output of the process by playing the SMF generated.

4.14 Suitability for creating contemporary (acoustical and

electronic) compositions.

This is the last but not the least of the four major design criteria for CACE4. As a professional
composer, I need a good package of tools for composing algorithmic music. Although many

interesting solutions are offered in different software packages (e.g. OpenMusic60, ACToolBox()l,

%% Standard MIDI files (SMF for short) is a specific file format for storing MIDI data according to the
specifications defined by the MIDI association. URL: https://www.midi.org/specifications/item/standard-midi-
files-smf

% OpenMusic is developed by IRCAM (Institut de Recherche et Coordination Acoustique/Musique, Paris
France). Further information can be found at: http://repmus.ircam.fr/openmusic/home

22

athenaCL" and Grace63), I prefer to write my own (more than thirty years of computer programming
experience in the domain of Computer Music makes the real difference). Another even more important
reason is to be able to work in an all-purpose programming language for expressing my ideas about
music software design in more detail. CACE4 is much more restricted to mathematical analysis of
numerical data in order to find certain numerical properties. Information retrieval and machine
learning algorithms are centred in the way CACE4 operates. In this way CACE4 is significantly

different than the other previously mentioned composition programs.

4.2 Technical Development criteria.

Other major development criteria and work concerns, besides the previously stated four design
criteria, the development criteria. These criteria are more incorporated into the specific development
platform called the Integrated Development Environment (IDE). This can be seen as the programming
language embedded into a software program development program, with all the development tools it
has to offer as such.

None the less, these other criteria are important and, throughout the development of the software

package, they are gaining in importance. For example, the development of a software package based
on Object Oriented Programming (OOP) techniques, without the aid of a so-called class browser, is,
without the necessary class overview, painstakingly difficult. Furthermore, as the program continues

to enlarge it is, in the long term, not really manageable.

4.2.1 Computer programming language.

Taking into account our criteria for extendability, multi-platform and ease of development, the
choice of computer language was limited to an object oriented one (OOP). Our initial choice therefore,
would be C++, C#, Smalltalk, or LISP. I chose LISP because it is known for its ‘rapid prototyping®’
possibility. It has an OOP extension (CLOS, which stands for Common LISP Object System), which
gives it easy extensibility and re-usability of the software code.

Also Object Oriented Wrapper Class Design: for easy extendibility of our composition program. This
is a software design issue and should be defined by Class design and embedded in software code.

The choice of LISP as the programming language will be explained in further detail in section 4.2.6

1 ACToolBox has been designed and programmed by Paul Berg, and has been developed in Lisp (latest version:
4.5.6 (2014). Additional information and downloads: http://www .actoolbox.net

52 A composition software application designed and programmed by Christopher Ariza and published in An
Open Design for Computer-Aided Algorithmic Music Composition athenaCL (Ariza 2005).

% Grace has been designed and programmed by Rick Taube. The implementation is described in his book Notes
from the Metalevel (Taube 2004).

% This could be a point of discussion: how is rapid prototyping defined? In this case, Lisp offers the possibility
of testing software algorithms in the Listener, which acts as the interpreter. The interpreter acts as a continual
kind of compilation, and as such speedups the development of new software ideas and implementations.

23

4.2.2 IDE, the Integrated Development Environment.

During the selecting of the right development environment, public domain LISP software
packages® were taken into account. They were rejected however, on the basis that a commercial

package would be a better candidate, as there is more guarantee that, in the near future, it would be

maintained and further developed for new developments in specific Operating Systems“. As well as
this, quick responses to specific technical questions and a good backup system, with the aid of a rather
large user group with a good functioning newsgroup with its own mailing-list and its use by major
manufactures of the aeronautical industries such as Boeing and NASA, gave some security in making
it the right choice of platform.

The choice of LispWorks with its extended IDE, there being no real other comparable competitor on
the market, makes it pleasant and easy to work with. Truly preferable in working with this IDE is that
it is fairly simple to extend and adapt the working environment. CACE4 has, from its early initial
stage of development, its own place in the Menu of the IDE. So it is rather easy to switch back and
forth between the LispWorks IDE (the Listener) and CACE4. There is always a fully functional LISP
Listener in the LispWorks environment, which speeds up the design and development of difficult
algorithms. Also the necessity of compiling each time before running and testing the algorithm is, in
an interpreted language as LISP, no issue. This results in a much shorter cycle of development

compared to a compiled language (e.g. C/C++ etc.).

The output of error message can be, especially in an Object Oriented computer language, cryptic and
initially hard to understand; this is also a well-known issue with other object oriented languages such
as C++ and C#. Another important issue is that the LispWorks IDE comes in different ‘flavours’.

Also it is truly a multi-platform IDE, as there are versions available for MS-Windows, Linux, Unix-
BSD and MacOSX). In order to get acquainted with the IDE, there is an entry-level version of
LispWorks Personnel Version, free from any charge® and fully functional except for two things: the
total working time in the IDE has been restricted up to 4 hours in a row, (then the work has to be saved
and IDE quitted before getting back to the work) and the amount of active RAM allocation of the IDE
has been restricted. Besides these two restrictions it is a fully functional, with all the CAPI (GUI

libraries) and other LISP libraries and program features, software development environment.

5 As there are: CLISP (URL: http://www clisp.org), Closure CL (URL: http://ccl.clozure.com), Quicklisp:
(URL: https://www.quicklisp.org/beta/) and CMUCL (URL: https://www.cons.org/cmucl/).
66 The multi-platform approach is also very well organized in LispWorks. By using the ANSI standard for Lisp

programming, the application can run under MacOS, Windows and Linux. Depending on the License obtained
from Lispworks.

57 This is an important consideration for using it for educational purposes as well, students have easy access to
this free entry-level version.

24

423 MVC, the Model View Controller paradigm.

Most of the GUI coding has been done based on the Model - View — Controller (MVC) principle
(paradigm) and design®. This means that there is a strict division of functionality for processing and

mathematical purposes (= The Model), the View (how to represent the data) and the necessary

View === Controller
Figure 3 The MVC programming paradigm.

Controllers such as: editable text fields, buttons, sliders and menu’s etc., to interact and control the
program. These three corner stones of the MVC paradigm are combined in a GUI (= Graphical User
Interface), to make the program overall easier to handle by a user. To integrate this software
programming technique and the use of CLOS means that defclasses(), and their associated
defmethods() must be used, sometimes defined by defgenerics(). The Controller interacts with the
Model. The Model in turn, interacts with the View.

The reverse direction is also possible between Controller and View. The MVC paradigm can easily
implemented directly in OOP techniques, by making use of superclasses and subclasses. For creating
the controllers and the view, as part of the GUI, the use of CAPI® was essential. The Model makes
more use of LISP functions but is also defined in a combination of superclasses and subclasses of its
own. The View has its representation by slots” and panes of the CACE4 Object, which are used for
creating the GUI. And the Controllers, as part of the GUI are also, separate subclasses as provided by
the LispWorks CAPI Library’".

424 GUI, the Graphical User Interface.

The whole design of the Graphical User Interface (GUI), apart from its incorporated MVC model,
is based on the principle of flexibility of data representation. Two important types of data
representation can therefore be distinguished: text based, which is mostly used as a representation for

numbers or elongated lists of numbers and graphical representation, which provides the user with

% Look for further details on the MVC programming technique:
https://msdn.microsoft.com/en-us/library/ff649643.aspx

% CAPI is an extended library for GUI implementation. All classes are equal to classes used in CLOS. For
details about the use of CAPI and other libraries visit: https://wwwlispworks.com/

" A slot of an Object can be seen as an exclusive storage space for literally anything in Lisp. “Object-oriented
Programming in Common Lisp” by Sonja E. Keene (Keene 1989) offers a detailed description about slots and all
the other aspects of CLOS programming.

! For further details see Chapter 4.2.7 where an UML diagram shows class design and class dependencies.

25

pictures and diagrams. This is mostly done by plotting in two dimensions and grouping the data into

xy number pairs. To be consistent throughout the CACE4 program, using the same colouring has

visually supported the grouping of certain classes in objects of the same functionality.

Superclasses:

CACE-MATH-generator-GUI ()

CACE-FILE-generator-GUI ()

CACE-Al-manipulator-GUI ()
CACE-DATA-manipulator-GUI ()

CACE-MATH-clusterer-GUI ()
CACE-MATH-manipulator-GUI ()

CACE-MATH-sieve-GUI ()
CACE-MATH-property-sieve-GUI ()
CACE-ML_MIR-manipulator-GUI ()

CACE-score-GUI ()
CACE-processor-GUI ()
CACE-project-GUI ()
CACE-translator-GUI ()
CACE-informer-GUI ()

Subclasses:

All fractals and attractors.
Random & Tendency.
spear-partials-text-file ()
text-file ()

midi-file ()

mxml-file ()

art2 ()

pruning ()

merging ()

sorting ()

splitting ()
math-clusterer ()
correlator ()

scaling ()

disturbance ()
math-sieve ()
math-property-sieve ()
expectation-maximization ()
k-means ()

No subClasses

No subClasses

No subClasses
miditranslator ()

informer ()

CACE4 Box object colour

representation:

:blue

:lightblue

:orange

:palevioletred

:orangered?2

:orangered3

:pink
:orangeredl

:red

:grey
:black
No Box
:purple

:green

Table 3 Table of all CACE4 superclasses and subclasses. The first column are superclasses defined by: capi:define-
interface(). The second column are defined as CLOS classes: defclass().

4.2.5

technique.

OOP, the Object Oriented Programming software development

Common LISP Object System (CLOS) as the Object Oriented Programming extension for use

with Common LISP makes it easy (with an initialize-instance method call) to extend basic classes,

mostly superclasses with extra or altered views. This can be done rather easily, by writing extra

methods for these subclasses. Dummy slots and panes (= defined view area in the CAPI library) in the

initial superclass are replaced by newly defined extra interfaces to suit best for this particular subclass.

As previous stated, working with CLOS means that there is a specific approach in organizing the
software on the coding level. The operation of the software and the GUI are fixed in accordance with
the rules of CLOS to the use of classes and their methods. Most interaction between GUI using the
buttons and editable text-fields, is done by defgeneric() methods™ (Keene 1989), with their behaviour
defined in LISP coding. The user interacts with instances of classes, defining the GUI and the methods
belonging to these classes by using these controllers, thus clustering the same functionality of
interaction of all the different subclasses grouped together into a single defgeneric() method, each with
their own, specific class-dependable algorithm (mostly checking a few details as checking ranges of
arguments). This last method is also part of an Object Oriented programming technique. This OOP
technique of encapsulating data and functionality is a core Object Oriented programming paradigm,
providing a framework for flexibility and speed during the development stage of the computer
application. As such, it is of major importance for developing software in a less rigid, more flexible

way.

4.2.6 The choice of a programming language; why LISP?

There are many reasons for the choice of LISP as the underlying computer language and not for
example, modern industrial languages as C/C++ or C#, especially when using Apple computer’s
Objective-C as the preferred development platform. The major advantages of flexibility and
extensibility as found in a general-purpose computer language, is also present in LISP. Symbolic
manipulation (for example note names as strings and their numerical representation) can be combined
in any way applicable for the software, without worrying at first too much about more low-level
technical aspects such as typecasting and memory allocation. In LISP this is the standard way of
working. The way it is incorporated into the design of the computer language makes it an ideal
language for describing processes as functions and, in our case, the use of associated musical symbols,
systems and structures. The plentiful availability of large libraries for mathematics and many more
topics is also of importance. The LispWorks libraries for Graphics and GUI design (CAPI) and a
strong ANSI standard” of this particular LISP dialect (Common LISP/Harlequin LISP) made it the
right choice. Other options would have been to design and program CACE4 straight away into the

Max/MSP environment or even MatLab’*, but these were not found to be applicable for this job”. In

7> The book by Sonja E. Keene is still regarded as one of the important books about CLOS (Keene 1989). And
also the book by Lawless and Miller: Understanding CLOS, The Common Lisp Object System. (Lawless and
Miller 1991) Offers detailed description of all features implemented in the CLOS standard.

3 The ANSI standard: X3J13.

™ MatLab: the software-tool for doing calculations in the domain of discrete mathematics. Its software
application is widely used in the world of science and engineering.

The official web-site: http://www.mathworks.com/products/matlab/index.html?s tid=gn loc drop

7> For future development purposes the LISP language possibilities as the use of association lists are needed for
implementing certain feature of a Music language and context. This is explained in more detail in Chapter 7.2
(page 129), Future development plans.

27

the case of Max/MSP, real-time was not an important option and all of the algorithms had to be
written as external objects (in the computer language C). This could have limitations for the
algorithms. For example in the case of 2/n-algorithms’®, it would block the whole (real-time)
functionality of the Max program. These specific types of calculations can consume a lot of computing
power and time, depending on the amount of data to be analyzed - 2 to the power of n. Also in most
cases the calculations can only be applied on the data set as a whole, which is a further limitation if the
concept of CACE4 has to be programmed into this real-time environment.

From the developer’s point of view, the option should be kept open for future extension of the
software package with new specific modules that would make use of certain LISP functionalities or a
specific technique of programming as, for example in the case of ‘frames’: a small A.l. program for
demonstrating a specific technique of frame using as designed by P.H. Winston, and described in his

book Artificial Intelligence (Winston 1984).

A general-purpose functional’’ computer language, with all the (extended) libraries as designed in
LISP, was the only option for having this kind of flexibility and extensibility I needed for
programming CACE4 and all of the designed CACE4 objects. As previously stated, that LISP is an
interpreted language and therefore the whole development cycle of editing/debugging and testing is
much faster than with a compiled language, makes it, in my opinion, the only right computer language

to use for this kind of software package.

At the moment the focus of CACE4 is more on the use of Artificial Intelligence processes: ART2
(Adaptive Resonance Theory — by Carpenter and Grossberg (Carpenter and Grossberg 1987) et al.)
and Information Retrieval processes such as k-means, EM (= Expectation Maximization), statistical
analysis and a few other processes for sorting, deleting and scaling of the data to make it scalable for
MIDI use. It also has a rather large Generator group of Attractors and Fractals. This group has been
incorporated due to historical reasons: it was a group of fundamental generative algorithms in the
older versions of the CACE programs and is still interesting to use for generating data. The design of
CACE4, as it is for now, makes it possible to easily extend it with other software modules from other,
interesting areas. These can cover totally different concepts. Even ATN’s, as described by Cope”
(Cope 1991) (Cope 2001) (Cope 2005), or other ways of using a Music language context, are possible,
as long as the developed Wrapper Classes’ are used and one single ‘stream’ for both input and output

is sufficient for the process.

One other important consideration (for the choice of LISP) is that although many different computer

languages have been used, LISP has a strong tradition as a computer language well suited for creating

’® K-means is such a type of algorithm.

" As opposed to a Procedural languages as there are: C/C++, C# or Objective-C.

8 All of the computer programs designed and developed by Cope are written in LISP.

7 Wrapper classes are provided as a template for an Application Program Interface (API). By putting shared
functionality in the wrapper class, development of the software as such, speeds up.

28

algorithmic compositions, as well for the development of computer assisted composition
environments. From the mid 1980’s, several music composition software packages were developed:
FORMES (1984) is amongst them. Developed by X. Rodet & & P. Cointe at IRCAM, Paris. It focuses
on composition and scheduling of processes. One of the earliest commercially available software
packages was Symbolic Composer (SCOM): a software package existing for almost 30 years (release

in 1991).

In the following 10 years many different packages were developed, all using LISP as their core
programming language. Some notable examples are: Common Music (CM) of Heinrich Taube; an
object-oriented music composition environment introduced in 1989. In 1990, CLM (Common Lisp
Music) was created by William Schottstaedt as a sound synthesis package for CM. In combination
with his CMN (Common Music Notation), the use of music notation and score printing became
available. Paul Berg released the first version of the AC Toolbox in 1992, a LISP based computer
composition environment. The AC Toolbox main focus is on the use of different types of generators

for creating notes, note structures, masks and sections.

David Cope took a somewhat different approach with his EMI (Experiments in Musical Intelligence),
originally released in 1996. EMI is Al software (pattern recognition) for music analysis and the

creation of compositions based on these analyses.

In the same year (1996) IRCAM released Patchwork a computer composition environment originally
created by Mikael Laurson, Jaques Duthen and Camilo Rueda. Patchwork has a strong focus on the
GUI and the use of graphics. In 1997 OpenMusic, also from IRCAM (Gérard Assayag, Carlos Agon
and Olivier Delerue), was released. OpenMusic was developed even further into a graphical/visual
style of composing computer music, with a strong focus on the use of a GUI. Furthermore, in 2002
Mikael Laurson, Mika Kuuskankare and Vesa Norilo developed the idea of Patchwork into PWGL
(PatchWorkGraphicsLibrary).

All these Computer Assisted Composition environments (see Table 4, page 30), were programmed

with LISP (or in the case of Grace: Scheme) as their core computer language.

Name CACE Author(s). Year of Remarks and URL.

(Alphabetical release.

order).

AC Toolbox Paul Berg 1992 A Computer Assisted Composition Environment.

http://kc koncon.nl/downloads/ACToolbox/

AthenaCL Christopher 2005 An Open Design for Computer-Aided Algorithmic Composition.
Ariza (Nowadays rewritten for python).
http://www flexatone.org/athena.html
CLM William 1990 Sound synthesis package.
(Common Lisp Schottstaedt https://ccrma.stanford .edu/software/clm/
Music)
CMN William 1994 Music notation package.
(Common Schottstaedt https://ccrma.stanford.edu/software/cmn/cmn/cmn.html
Music

29

Notation)

CM (Common Heinrich 1989 Object-oriented algorithmic music composition environment.

Music) Taube http://commonmusic.sourceforge.net
At a later stage Grace (Graphical Realtime Algorithmic Composition
Environment), programmed in JUCE (C+) and S7 Scheme, was added

to CM.
EMI David Cope 1996 Al software for music analysis and composition.
(Experiments http://artsites.ucsc.edu/faculty/cope/experiments.htm
in Musical
Intelligence)
Flavors Band Christopher 1984 Originally a LISP-based music language.
Fry http://www .algorithmic.net/system/flavors_band
FORMES X.Rodet & & 1983/4 IRCAM: Software for Composition and Scheduling of Processes.
P. Cointe Based on a Object-oriented language for synthesis and music
composition (in VLISP). See for more information:
http://articles.ircam.fr/textes/Rodet85a/
Nyquist. 1997 Roger Music and synthesis programming environment.
Dannenberg https:/www.cs.cmu.edu/~music/nyquist/
OpenMusic Gérard 1997 IRCAM: MIDI, audio, symbolic notation.
(OM) Assayag and https://www.ircam fr/transmission/formations-
Carlos Agon professionnelles/openmusic/
with Olivier
Delerue.
Patchwork Mikael 1988 IRCAM: MIDI and symbolic notation
Laurson, http://recherche.ircam fr/equipes/repmus/RMPapers/CMJ98/
Jaques Duthen
and Camilo
Rueda.
PWGL Mikael 2002 Visual music programming environment
(PatchWork- Laurson, Mika http://www2 .siba.fi/PWGL/
openGL) Kuuskankare
and Vesa
Norilo.
SCOM Peter Stone 1991 http://www .symboliccomposer.com/page_main.shtml
(Symbolic
Composer)

Table 4 Overview computer assisted composition environments. Used sources: Tim Thomson:
http://mosuch.com/tjt/plum.html and Paul Doornbush: http://www.doornbusch.net

Thus after careful consideration, LISP as the computer language of choice was self-evident.

4.3 Design Analysis of CACEA4.

The two major groups of objects in CACE4 are Generators and Manipulators. Certain aspects of
their design and functionality in the CAE4 program will be analyzed in more detail. The two groups
directly reflect the idea of first generating and secondly, manipulating the (input) data, as two separate

entities. Their only connection is by exchanging data as a numerical stream (output).

30

4.3.1 The CACE4 Generators.

The Generator is a group of CACE4 objects used in the beginning of every CACE4 chain of
objects. They are necessary in order to generate initial material as a single stream of numbers. There

are two major CACE4 Generators groups to select from, as can be seen in Figure 4:

GUI

SubClass
Automata

@

SubClass
Henon

Y
Slae
8| c
&
4

SubClass
Lorenz

3
3|e
8lc
3
8

SubClass

GUI Réssler

3
o}
8| <
&
4

@
=

SubClass
SubClass Gul Bifurcation

MIDI Files

Process|

0
]
8
o
&
4

SubClass
Sierpinski

i

Process|

SubClass

SuEEE lterated

SPEAR Files

3
g2
14
i\o
c

j FS“ nction Process|
SuperClass / ystem
CACEA4 FILE Generators CuApCE FILE CACE4 MATH SuperClass
Defgeneric & functions PACEGLE Generators CACE MATH SubClass ol
Defgeneric &

SubClass
Text Files

i

functions Generator Julia Process|

2
3 [1e
8[1<c
@
8

ubClas: c
Mandelbrot 1

i

Process:

SubClass
MXML Files

SubClass
Mandelbrot
2

Process:

i

0]
5

SubClass
SubClass M=
LiliPond File
SubClass

Brown

ny

3

gl e

8

4
imé\

c

SubClass

Chaos on
torus

i

SubClass
Tendency

i

SubClass
Linear

Congruental Process
Method

Figure 4 The CACE4 Generators and their CLOS Class dependencies.
Superclasses are in red. All processes (purple) are methods and functions. GUIs (light-blue) are subclasses.

All of these Generator objects act as a single initial source of data for other Manipulator objects (see
section 4.3.2, page 32). In the case of selecting a CACE4 FILE Generator as our initial Object, a
number sequence from a file in ASCII format (text-based) is used as a Generator of data. This can
either be a plain text file: in most cases numbers in (X, y) pairs, or a SPEAR partials text file. Also the
use of a SMF (Binary) format 1, as initial data source is possible®. In all three cases the file will be
read in and displayed in a graphic plot format. At the right hand of Figure 4, a large group of fractal
and attractor calculations can be seen: they can be chosen as well and used as initial data generators.
This shared functionality is reflected in the design of the underlying class dependencies and shared

behaviour (by defmethod() and method combination). The two superclasses (in red, see fig. 3) define

8 For now Music XML (MXML) and Lilypond file format are not yet available.

31

for a large part the GUI and functionality of plotting aspects of the displayed data. By using the
computer programming technique of defining ‘defgeneric’ combination of methods and functionality
for ‘low-level’ plotting aspects elements such as pixel-size, zoom factor and positioning of the plot are
shared. All subclasses (in orange, see Figure 4) inherit these more global GUI parameters, by being a
subclass of either one of these two superclasses. Every subclass does have its own set of methods for
dealing with parameters values on the GUI level (in blue). For executing a calculation (also called
Process: in purple), other more subclass specific methods and functions are used. By making use of
these object oriented programming techniques of sharing large blocks of code by inheritance of

methods of use, more compact computer coding is achieved.

4.3.2 The CACE4 Manipulators.

The group of Manipulators is the largest group of CACE4 objects. They act as manipulating
objects of the Generator objects (original data stream) or they act (in a chain) on a Manipulator object
as well.

There are four superclasses (in red, see Figure 5, page 33): Al Manipulator, ML & (M)IR
Manipulator, MATH Manipulator and DATA Manipulator. Just like the Generator objects, they share
functionality for plotting by making use of defgeneric method combination. Subclasses (in orange)
inherit from either one of these four superclasses and are in this implementation of CACE4 closely

related in definition and behaviour.

By grouping certain approaches into these design groups, software design and thus computer
programming is made much easier. From a mathematical point of view, the organisation of the
software by grouping certain classes around mathematical processes and calculations, as is in the case
of the Generator objects (fractals, attractors and etc.), does make sense. In the case of the CACE4
Manipulator objects, the four Manipulator groups consist of entries grouped around a certain design
and functionality. The latter property can be derived from a domain of Informatics (Al: CACE4 Al
Manipulators, MIR and IR: k-means and Expectation-Maximization), or, in case of the CACE4 DATA
Manipulators, more freely according to their functionality; examples being Pruner (a deleter), Merger,

Splitter and Sorter CACE4 objects.

32

SuperClass
Al cLl
Manipulators SubCl
Artificial ‘:\RT;SS
Intelligence cul
SuperClass GUI
M.L. & M.LR.
(Machine SubClass GUI
Learning VrrEe
Inft’;ﬂrrl:-lsa“t:ion SubClass
Retrieval) EM
GUI
GuUI
GUI
SubClass
Correlator
SubClass GUI
Scaler
Process
CACE4, SubClass -
Manipulators)
SuperClass Disturber

@
E

Defgenerics &
functions

MATH-
Manipulator

SubClass
CLUS - cluster

o
e || 8
c |8

@

%

Manipulator
SubClass
STAM - Statistical
Manipulator GUI
SubClass Process

STAP - Statistical
property sieve
Manipulator

e

GUI Process

SubClass
Merger

Process
SubClass
SuperClass Pruner
DATA-

Manipulator

il

Process
SubClass

Sorter

1

Ul

Process
SubClass

Splitter

il

Figure 5 The CACE4 Manipulators and their CLOS class dependencies.
Superclasses are in red. All processes (purple) are methods and functions. GUIs (light-blue) are subclasses.

Extension and alteration however, are always possible. All subclasses have their own process, shown
in purple (see Figure 5) and specific GUI-elements are shown in light blue. Specific mathematical
algorithms are defined as a function(), or as a defgeneric() method, in order to encapsulate the data
type (e.g. multiple sources defined as different types: strings, numbers, arrays and lists). For example
the hypotenuse can be calculated for just two sides, or for a whole list of sides at the same time. The
consequence of applying this programming technique is to achieve compacter and much easier

adaptability of the coding®'.

81 In future versions of CACEA4, further use of this implementation technique will be extended into larger parts of
the CACE4 (function) Libraries.

33

SuperClass
M.L. & M.L.R.
(Machine
Learning

Music
Information
Retrieval)

CACE4
Manipulators

Defgenerics &
functions

GUI
SubClass

K-means

GUI

mean() -
function

GUI

SubClass

informer

CACEA4 Informers

Defgenerics &
functions

SuperClass
Informer

GUI

Figure 6 Example of class dependencies and methods with shared functions.
The following colour coding has been applied: superclasses in red, subclasses in orange, GUI in light-blue, methods in
purple and (shared) functions in green.

Figure 6 shows an example of class dependencies and shared functions. Mean() as a LISP function, is
used by a CACE4 Manipulator Object®”. But the same function mean() is also used in a CACE4

Informer Object®.

433 List of all objects and functionality in the software package.

Table 5, page 35 shows a list of all 36 objects (and process algorithms) implemented so far
(December 2015). In the first column (Group) we find 6 groups. The first four Group members
(CACE4 Generators, CACE4 Manipulators, CACE4 Translators and CACE4 Informers) can be used
in a Processor window as part of a strategy chain as can be seen in a processor window (e.g. Figure 9,

page 37, shows a possible strategy chain).

Group Sub-group CACE4 box-object

CACE4 Generators Fractals Automaton

Bifurcation diagram
Brownian movements.
Chaos on Torus
Iterated Function System (IFS)
Julia
Linear Congruential method
Mandelbrot 1
Mandelbrot 2
Gumowski-Mira
Random Cloud
Tendency masks

Attractors Henon type 1
Henon type 2
Lorenz attractor
Rossler attractor

82 The order of class() dependency; all the objects are directed to their superclass(): CACE4 Manipulator <-
ML/MIR (Machine Learning/Music Information Retrieval) <- k-means <- mean.

8 The order of class() dependency; all the objects are directed to their superclass(): CACE4 Informer <-
Informer <- mean.

34

Files (input) Text files
Spear partials text file
Standard MIDI file (SMF)

CACE4 Manipulators Al ART?2 (Adaptive Resonance
Theory 2, Neural Network)
ML/MIR (Machine k-Means. (Hierarchical Cluster
Learning/Music Techniques)

Information Retrieval)
Expectation Maximization.
(HCT)
Data Manipulators Pruner
Merger
Sorter
Splitter
MATH (ematical) Correlator
Manipulators
CLUS (Clusterer)
Disturber (Disturbance).
Scaler (Scaling).
STAM (Statistical
Manipulation)
STAPs (Statistical Property
Sieve)
CACE4 Translators Translators Translator (MIDI Translator)
CACE4 Informers Informers Informer/Viewer
Table 5 List of all 34 CACE4 Processor objects for using in the Processor window (CACE 0.56 - December 2015).

Table 6 shows the two remaining CACE4 objects belonging to the CACE4 Project object with a
separated display. Initially when a new project is started, at least one CACE4 Project object needs to
be added to the Project window. Later, more CACE4 Processor objects and Project Score objects can
be added. For now, only one CACE4 Score object is necessary in order for the program CACE4 to

function properly.

Group Sub-group CACE4 box-object
CACE4 Processors Processors Processor
CACE4 Scores Scores Score

Table 6 List of all CACE4 Project objects (2) for using in the Project window in version CACE4 0.56 (December
2015).

434 The CACE4 Project object and display.

This is the first window-display when a new project is selected in the CACE4 menu. After
opening, the user must select a new CACE4 Processor object from the left <Add Processor box>.
After creating a strategy with multiple CACE4 objects inside this Project Processor object, the output
of the strategy can be translated with a CACE4 Translator object.

For displaying and saving the calculated output to a file, a CACE4 Score object must be created in the
CACE4 Processor window. By doing so, the user is now able to save the output to a SMF. As a main

technical design feature, the purpose for this approach of grouping together is to keep several CACE4

35

Processor objects visually tied with their (associated) Score object. This is also directly reflected in the

GUI of the Project Window (see Figure 7).

[] ([] CACE4 - Project
Project files Print Help

D d & W

i R S el Project Processor-18:6:15-31:1:2016

Add Processor box

Project Processor-18:6:18-31:1:2016

Add Score box

Select action on box-object

Move-Edit
Connect
Disconnect
Delete
Project Sco-re—18: 6:31-31:1:2016

UnLock / Lock Score

CACE4

Add a Score object to the Project window at the right. - was selected.

Figure 7 An example of a CACE4 Project window with three Processor objects and one Score object.

The differences in functionality, but also their functional dependencies, are reflected in their colour
coding. Black is used as the colour of choice for the outside of the Project object and its background.

The Score object uses grey as the colour of choice (see Figure 8).

Project Processor-13:1:31-22:11:2015

Project Sco-re—13 :1:35-22:11:2015

s‘“e

e CACE

Figure 8 Colour coding of the CACE4 Project objects.
The two main groups of Project objects: the Processor object in black and the Score object in grey.

The purpose and functionality of the CACE4 Processor is restricted to a GUI one, in order to act as a
container (or box) for different strategies. It gives the user of CACE4 the right metaphor: an object for
accessing by double clicking to start using the several data analysing and transforming objects®

available in CACE4. By ‘chaining’ them together they are connected on a GUI level to form

8 See Table 5 for a detailed overview of all CACE4 objects available. All CACE4-Generators, CACE4-
Manipulators, CACE4-Translators and CACE4-Informer objects can be used.

36

sequential visual process descriptions for ordering and re-ordering of different ideas. These chained
lines are a metaphor of how the data flow is organized and are displayed as lines with arrowheads (to

indicate the direction of the data flow) in the GUI.

4.3.5 The CACE4 Processor object and display.

The Processor object acts as a design window, or workspace, for laying out a strategy by the user.
This is directly reflected in the way it behaves and looks (GUI) (see Figure 9, page 37): boxes can be
moved around, they can also be linked, new ones can be added and unnecessary ones can be deleted.
This all creates a more intuitive way of working and considerably speeds up the process of designing a
strategy. The layout and the way the objects are linked together by means of using an arrow object, are

also designed into the process to keep track of how the strategy is put together.

[JOX] Project Processor-18:6:15-31:1:2016
Processor files Print Help

= | = "?

Add a Generator box-object

Random Cloud

Attractors

Math Generator-Random Cloud-18:34:33-31:1:2016

Al

Files

Add a Manipulator box-object

Al
HCT - k-Means Clustering
Scaler

Pruner

Add a Translator box-object
ormer-18:35:37-31:1:2016

MIDI Translator

Add an Informer box-object

Informer

Select action on box-object

Move-Edit
Connect
Disconnect

Delete

UnLock / Lock

Move-Edit a processor-box-object - was selected.

Figure 9 An example of a CACE4 Processor window display with a simple strategy for using k-means.

The differences in functionality of each of the four groups, but also their functional dependencies, are,
just like the previously discussed Project objects, reflected in their colour coding (see Figure 10, page
38). The colour blue is used for the Generator objects. All different shades of red are used for the
Manipulator object group. The Translator object uses purple and the Informer is displayed in the

colour green.

37

Math Generator-Brownian movements-17:24:6-24:11:2015

. y Math Generator-Rdssler attractor-17:24:19-24:11:2015
sl g
s

File Generator-Load Data Text/Doc File-17:24:28-24:11:2015

out’

AL Mqripula-tor-ARTZ (neural network)-17:24:49-24:11:2015

Ma lato in
%. ML_- MIR Mapipulator-HCT - k-Means Clustering-17:25:19-24:11:2015
!

‘out”
m MATH (LUSTE&ER Manipulator-CLUS: Clusterer-17:25:28-24:11:2015
. ‘m
ut!

Trar‘slﬂtor‘-ﬁIDI Translator-17:25:58-24:11:2015

DATA Mar‘lpu;ator-Prur‘cr-U :25:36-24:11:2015
y

ar G; N.vr‘[‘ .

Inform-er'flnformer'—ﬂ:zs: 1-24:11:2015

Figure 10 A selection of the coloured CACE4 Processor objects.

It is a direct implementation of the functional design of CACE4 into these four main groups. The
choice of colour is bound only to these four groups® and thus is also reflected in the GUI-design of the

CACEA4 application (see Figure 10).

4.3.6 The CACE4 Object System & Modelling Organizing Shell,
COS&MOS2: connecting everything together.

As described previously in the analysis of the CACE4 program, due to extendibility and
modularity, there was a necessity for first creating a specific object oriented system for handling the
control and flow of the data and the organisation of the CACE4 object system. Its design therefore,
would guarantee a specific type of communication® between the connected objects and a correct flow
of the data in CACE4. After creating the first version of COS (= CACE4 Object System) and later
extending it with MOS (= Modelling and Organising Shell), rewriting parts of the system was
necessary in order to make it as simple, clear and flexible as possible. In addition, the 'lack' of an
underlying language and therefore no context availability to give it a structure to keep the data flow
‘together’, caused COS&MOS?2 to be designed the way it is. Based on the principle of linked objects,
superficially comparable to the well-known technique of linked lists, the objects are only 'connected'

by their CLOS object-slots that contain a specific OBJ-ID to which it is connected. This specific,

8 The initial choice of colour for each group: red was obvious for something to process the numbers and thereby
drastically alters the output or generate, according the process, totally new output. Blue is used for all generators
(three different type of files and several fractals and attractors). Purple for Translation of the stream. And finally
green for an informer object, which only reflects certain statistical qualities of the stream and gives the user a 2D
view of the stream. Also as it is the only exception for all CACE4 objects: it doesn’t interfere with the stream, as
defined.

8 A more elaborated system of connections for exchanging data is not necessary in this version of CACE4.
However, future versions, with some kind of knowledge about context, will make use of a system for exchanging
other forms of data (information).

38

absolutely unique number is generated with the special LISP function: gensym(), which stands for
generate symbol, on creation of every instance of an object. This, guaranteed by the underlying LISP
system, unique OBJ-ID number, is stored in a slot of the instance with the same name and is used as
an identifier when connections are made or data is retrieved (See Figure 11, page 39). It shows a
detailed overview of this system of object linking. By avoiding the copying of whole instants in slots
and the burden of keeping track of updating the other slots of the connected instance®’, a chain of
linked instances (or objects) with a random order can be created. This gives one the possibility to

experiment and to alter the sequential order to get the desired results.

{No LINK-INPUT}
,,,,,,,,,,,,,, = OBJ-ID flow.
_____ = DATA flow.

v = direction of flow.
- = no input/output flow.

0BJ-OUTPUT

(--)

\ LINK-INPUT E(

v |
oy

1
Manipulators
1

v

LINK-INPUT

{No LINK-OUTPUT} [OBJ-OUTPUT] | {NoLINK-OUTPUT} {No OBJ-OUTPUT}

Figure 11 CACE4 COS&MOS2 the chain of communication by OBJ-ID and data transfer between the CACE4 GUI
objects.

Figure 11, page 39, shows an overview of all possible object slots, involved in the COS&MOS2
Linking system. A software feature build in every CACE4 GUI object Class.

Upon linking two objects together, this OBJ-ID is stored in the LINK-INPUT?2 slot or LINK-
OUTPUT?2 slot. Which slot is used depends on whether the object is linked to, when its LINK-
OUTPUT?2 slot is used, or whether it is linked from, when its LINK-INPUT?2 slot is used to store the

87 This is now only done by the instance itself, thus avoiding extra coding and keeping the functionality of
COS&MOS2 as clear as possible.

39

OBJ-ID. By using this approach a bi-directional link has been created between the two connected

objects.

For all of the objects, all flexibility of changing values in other slots of the instance is only done by the
instance itself, after been created by the LISP function make-instance(), and stored in the
CACE4POOQOL. The global variable *CACE4POOL*, acts as a ‘pool’ of type list() where every
instance, after creation, is stored. In creating a chain of objects, several objects will be created and
stored, ready to retrieve from the *CACE4POOL* to save or load data from slots necessary for

performing a specific task.

Looking at the CACE4 program, it can be seen that a connection is drawn when two objects are
connected together. This is only a GUI and has no further purpose in the process. With a simple set of
slot-readers and writers, it is now possible to keep track of all the connections made. By opening a
CACE4 object, the slot-reader actively reads the LINK-INPUT?2 slot and gets the specific output data
of the object to which it is connected (slot: OBJ-OUTPUT). In this way all output obtained by
calculation or processing of the data is stored only in the OBJ-OUTPUT slot of the object itself, thus
avoiding extra overload in storing copies of this data (as LISP lists in RAM®) to slots of other
connected objects. Strictly speaking, these extra copies are unnecessary and should be avoided in
order to keep the RAM occupation by the program to a minimum®. The OBJ-output slot is filled by
the object itself and will only be read by the other, connected object, if it needs the data for rerunning

a specific task or calculation.

Except for each other’s OBJ-ID therefore, there is no other type of information storage necessary to
maintain the chain of connections and the associated order of the objects. Also by using a copy of the
list of data on which to perform calculations, there will be no interference with the original output of
the attached (input) object. COS (= CACE4 Object System), stands for the process of connecting

CACE4 objects and lets them have access to all object slots necessary for processing their input (data).

MOS (= Modelling and Organising Shell) is reflecting the Class dependencies of the OOP Model as it
is designed and used to create CACE4. The organisation of all these classes is reflected in the UML
Class Diagrams of CACE4 (see Appendix 2.1 to 2.6). MOS acts as a shell, with the use of template
files for wrapping (new) CACE4 objects in predefined classes for the GUI.

88 LISP lists occupy more memory space then arrays due to the fact that they store more then only the number
itself. Mostly extra information as type description is stored as well.

8 Although for certain types of calculation the lisp function copy-list() is used before destructive lisp functions
as delete() and sort() are called. But this is all done on a local binding level in a let() or let*() block. After it has
been used, the LISP Garbage Collector (GC) does have access to those blocks and thus it can clean up no longer
needed RAM space.

40

4.3.7 UML 2.5 diagrams.

The use of Unified Modelling Language (UML)* diagrams’' provides the tools for displaying the
class dependencies, as created in CACE4, in more detail. Normally used for imperative computer
languages, UML can also be used for analysing LISP programs as CACEA4. It offers several types of
analyses, but in case of CACE4, Class Diagrams are used. These show Class dependencies by
displaying a Generalization: the line with the white arrowhead and the relations between classes by
showing an Association: a line without an arrowhead. Another possibility is to display all packages

used, in a Packet Diagram as shown in Figure 12.

«system» «access» «framework»
CECIV-PACKAGE CLOS
i
i «access: «framework»
H cL
i —
«access «framework»
H CAPI
l«access»
«framework»
«access» GP
i«access»
\2
.
e framework»
' COLOR

Figure 12 The CACE4 UML Packet Diagram. This shows the packets and their mutual relationship. Access is granted
by package design.

CACE4 makes use of several libraries provided by LispWorks (part of the IDE). The GUI is
embedded in these Libraries in order to be able to create an application with a GUI. Common
Application Programmer’s Interface (CAPI) is mostly used together with GRAPHICS-PORTS (GP)
and COLOR (all extended libraries). Combined they provide all classes and functions necessary for
building GUI’s. The two other packages: Common LISP (CL) and Common LISP Object System
(CLOS) are the language packages; they provide all necessary functions, macros, generics, methods

and classes for creating an application.

% UML is widely used by IT professionals for creating diagrams for different situations and to be able to build
Application Frameworks (mostly consisting of GUI) and to be able to generate programming code (mostly in
C++, python, java) It is outside the scope of this thesis to explain UML in depth. See for further information:
http://www.uml.org (this is the site of the official UML organization).

! All UML diagrams shown have been made with: StarUML 2.7.0

41

Appendix 2.1 shows a UML Class Diagram of a few of the CACE4 Generator objects’*. They show
the relation between CACE4 Generator objects and CAPI objects and functions for creating objects
with a GUI”. The numbers left and right from an Association line (the line without an arrowhead),
shows the multiplicity of the connection (mostly there is just a single connection). The generalization
lines show the class dependencies. They all point to a macro: (CAPI: :define-interface()’”) and
provides CAC4 with an instance of a GUI superclass. All further functions etc., necessary for creating

a GUI, are inherited.

Every Class is represented by a rectangle with three compartments. The upper compartment is for
displaying Packages and Class names and stereotypes’. The middle one holds all the arguments (or in
this LISP case, all the slots) of a CACE4 Object. They all have a minus sign for their name, standing
for ‘private scope’. The lowest compartment is for displaying all important methods and functions

used by the CACE4 Object, together with all of their arguments.

The next two, Appendix 2.2 & 2.3, are two halves of one larger UML Class Diagram. Together they
show the Class Diagram of All CACE4 Manipulator objects. Most CACE4 Manipulator GUI objects
point to their superclass GUIL: CAPI::define-interface() for inheriting all necessary functions, classes

and methods.

Just like the CACE4 Generator objects, the CACE4 Manipulator objects have a simple Class
relationship. A CACE4 GUI Object, with all additional GUI Classes and functions, acts as a
superclass template (strictly speaking, it is a subclass) for all calculating (or processing) objects, such
as fractal, automata and file input objects etc. All CACE4 objects are built with this OOP concept,

providing every Model with its necessary View(s) and Controllers.

Appendix 2.4, shows an UML Class Diagram of the two remaining CACE4 objects: A CACE4
Informer object and a CACE4 (MIDI-) Translator object. They show the same UML dependencies and

relations as there are in the previous UML diagrams.

In the best tradition of UML, although the diagrams are detailed, they are not complete. They do
however provide another, more convenient way of describing relations between software modules, as

there are packages and their classes.

°2 An extended view of all available Objects can be found at Appendix 2.5 and 2.6.

% Although CACE4 objects (for viewing and controlling) are embedded in the CAPI classes, the Model (from
the MVC paradigm) is separated by a CACE4 GUI class (CACE-Generator-GUI object and CACE-Manipulator-
GUI object). It only makes use of the CLOS classes, so the Model code (and the software engine) is still
transportable to other IDE’s and other OS platforms.

* CAPI:: indicates the package where the macro or other functions, classes and methods are first defined.

% Stereotypes is UML terminology used for specifying a certain type to an item. This can be anything: from
strings and integers to methods and classes.

42

Chapter 5
CACE4: taking a closer look: GUI and software functionality

This chapter takes a closer look at the design of the GUI as well as the underlying functionality of
CACEA4 as a Computer Aided Composition Environment application. The major group of CACE4
Manipulators is split into four smaller sub-groups, representing certain types of processes that cover
specific topics from the domain of A.Il., Machine Learning and Music Information Retrieval,
Mathematical manipulation and Data manipulation. Due to the fact that CACE4 is still a work in
progress, with newer versions being created on a weekly basis, it is difficult to give it a final version
number. Therefore for this thesis all output has been created with this version: CACE4 v00d.56.19.479
// created on 10-12-2015.

51 The CACE4 Generator objects.

Although the CACE4 Manipulators objects are the main focus of this thesis, without numerical
input from one of the two different CACE4 Generators, analysis and manipulation of data by the
CACE4 Manipulator objects could not be done. Therefore a brief explanation is necessary as their
major function is to take care of the Input Output (IO) of the CACE4 program. This is done by either
generating from mathematical equations (fractals and attractors) or by reading a file and provides the

CACE4 Manipulator objects of proper data for analysis.

The two main groups of Generators:
1 CACE4 MATH Generator objects.
2 CACE4 FILE Generator objects.

The CACE4 MATH Generator object group consists of different Fractals, Attractors and different
types of random number generators. From the large group of fractals a Bifurcation diagram, an
Iterated Function System (IFS) a Julia set fractal, a Gumowski-Mira fractal, two different types of
Mandelbrot calculations and an Automaton calculation have all been implemented as separate CACE4
MATH Generator objects. There is a group of random number generators: Brownian movements,
Linear Congruential method, a Chaos on Torus calculation, a Random Cloud generator and Tendency
masks have all been implemented as separate CACE4 MATH Generator objects. In addition, a few
different Attractors have been implemented in CACE4. A Henon type 1 and 2, a Lorenz and a Rossler
Attractor are all implemented as CACE4 MATH Generator objects.

% By now: 11™ of May 2016 there is a newer version available: v00d.57.08.490.

43

The CACE4 FILE Generator object is available in three different types. First as a SMF format 1
reader, second as a SPEAR partials text file reader, and third as a plain text (.txt) file reader. When
using this last CACE4 FILE Generator object, the numerical data in a plain .txt file needs to be in a
(x,y) paired orientations as the data read in from the file will be used for direct plotting (2 dimensional
x/y axis) as well. The choice of representing data in a one or a two- dimensional list really depends on
how one wants to view the data. If a one-dimensional view is selected, an extra x will be generated
and used for plotting (on the x-axis). Whatever is chosen, the stream itself will always consist of the

unaltered original data as a one-dimensional list.

5.2 The CACE4 Manipulator objects.

As is previously explained in section 4.2, the objects from the Manipulator group are the main
core of analysing and manipulating of the data streams. The split into four main groups is reflected in
the software design by the selectable menu items on the left side of the CACE4 Project-window (see

Figure 9, page 37).

The main four groups of CACE4 Manipulators are:

1 AI Manipulator.

2 Machine Learning / Music Information Retrieval Manipulator (ML-MIR Manipulator).
3 Mathematical Manipulator (MATH Manipulator).

4 DATA Manipulator.

Although completely different in processing the input data, these four groups have one thing in
common: they all share the ability of changing the data with their limited techniques according to their
algorithm design. Sharing certain characteristics is reflected in their naming: the MATH Manipulator
reflects the use of mathematics as the core process, by using correlation, scaling and statistical
properties. The DATA Manipulator uses techniques from the domain of Informatics and mostly
involves a more elaborate use of techniques for processing data (e.g. merging, sorting, deleting or
splitting). The two remaining groups, AI Manipulator and ML-MIR Manipulator, have been created as
two separate CACE4 objects although they share many characteristics’’. The reason for this is that the
ART? neural network belongs to the domain of Al. Originally designed as a model for how neural
based networks could be programmed on a computer, ART?2 is vector based. Other (M)IR techniques

use (x,y) number pairs and are more related to the domain of Statistics and data mining. The

°7 This is also reflected in the class dependencies: All four subclasses share certain characteristics by their
superclass(): CACE4 Manipulator.

44

Hierarchical Cluster detection techniques, k-means and Expectation-Maximization (EM), are grouped

into ML-MIR Manipulator objects.

53 The CACE4 AI Manipulator object group.

This is a separate group of objects based on techniques from the domain of Artificial Intelligence

(AI). For the moment ART?2 is the only working A I. object™ in CACEA4.

531 Adaptive Resonance Theory Neural Network (ART?2).

The core engine of the A.I. Manipulator ART2 Neural Network is the Adaptive Resonance Theory
Neural Network: ART2 as designed and proposed by Carpenter & Grossberg (Carpenter and
Grossberg 1987). Originally designed for recognition of optical patterns in pictures, ART?2 is vector
based. The (input) vector length can be set to anything between 2 and 20 entries. (To be most effective
the vector size should be between 5 and 10 entries, also called nodes.) ART2 NN is constructed as a 3
layer neural network, and obtains its input from the CACE4 object it is attached to as a list of vectors.
This input vector will first be normalized in the first layer and, after weighting, transferred to the
hidden layer and finally to the output layer, where the weighting of the nodes to group the vectors into

different categories takes place.

The Adaptive Resonance Theory NN makes it possible to work with a neural network that has the
property of being adaptive to ‘strange’ input. If there is a new vector to qualify and it does not fit with
the previous vectors in the existing categories, ART2 will create a new category for this vector. From
now on, this newly created output category and ART2’s vector based grouping of data, results in
different categories with a certain overlap at their adjacent boundaries. As a final result, these grouped
vectors share the same characteristics in a looser context than grouping by strict values (for example <

or >) would allow.

The ART2 Neural Network works without supervision, as it doesn’t have to be trained by using
specially created vectors as an example or template vector in order for it to become effective. ART2
works according Adaptive Resonance principles: a self-regulating feedback mechanism. Amongst
several parameters that can be used are the Learning Cycle Counter (see Figure 13, page 46: <number
of learning cycles>) and the vigilance parameter of the NN, which represents the overall alertness of
the NN. The LCC is used in the process as a variable counter for the number of times the ART2 NN

will evaluate the vector. This is necessary in order to classify (categorize) the vector. It is a

% In future versions other techniques as Frames (Winston 1984), Inference Rulers (Forward and backward
chainer) and A-Search (Heuristic search) will be added to the group.

45

fundamental property of the ART2 Neural Network, as opposed to other types of neural networks”

which need some training sessions in order to function properly.

Alpha and Theta are two (adaptable) constants of the ART2 NN model. Alpha is used to scale the

input vector and therefore has the initial value of 1.0 (and should be used with caution). Theta is

1
+/ ninputs

input vector, and should therefore be adapted if the input vector size changes (for example, increasing

calculated according to: thetq = , where ninputs stands for the size (number of nodes) of the

if the number of nodes are decreasing and vice versa). The reset threshold can be used to change the
NN’s overall sensibility for resetting itself in case the ART2 NN is categorizing the input vector in a

wrong category.

eove Al Manipulator-ART2 (neural network)-15:67:21-10:12:2015

Al Manipulator Graphics Output

Category 1 Category 2 Category 3 Category 4 Category &
no: 17 no: 35 no: 8 no: 41 no: 41
N - . VAN s U\
6 | 2 | 2 | 2 DNNAS s NN
s | 2 | s | PENVAVAVER \/
10 | ar | 50 | 3 oo~ e
v N 33 | 54 | 38 [N~ R RENAVAN
1 | a7 | 7% | a0 [1 L
® DAL 3 | o | o Do v AT
20 | o | 181 | a8 [AR R VANV AN
2 l\/\/ 23 | EVAY 19 V\/
I VAVAY 58 [/ AEVAVAN
30 | 4 | 60 NN A EVAYN
32 | a7 | PN
o b/ w0 | os
7w DN~ | P AVAS FAEVAVAN
NEVAVArY VAV NN
e DN | » A YA VAN
132 | 66 | s N 63 L~
o N w0 [e N
69 | 2 N~ V\/\/
A Mariolator aton istory A1 iputvctors Aloutput vectors Graphics view values Adaptive Resonance Theory-2 neural network.
< - (104.60068 48.1 173.84117 4 & - on o0 401 1.7 s Z0OMfacor: 1.0 o0 veetor colour value:
5.27143.1500 8.3 16,0037 s T 3 166,005 cotegoy: Input vector length [2 - 201 7 v
xposition: 50
AL e RS T NR— e
nimmgyrees et | [. eaioot-ose o3 o —
- (49.1 170.67946 49.2 14111 & 141 Tnput Vector = (49.1 170.67946 49.2 141.110 » Vigilance [0.01-0.99] 0.95 v [
01553 10085665 .45 1003 T 8 categomr 5 Numbers generated: 0
2 Vcor < 13052 0.5 367506 ¢ 4142 o Vckor = 33902 453 6,750 3 Notes: Az [ve [
2015 Scancsann 9.6'06. 68799 49.7 228, 19268) 16 96.68799 49.7 224.79268) category:
<notes 621278 > Reset Threshold [0.01 - 0.99] 0.05 V6 pink
Number of learning cycles [5 - 100] 50 v7 [
Select ype of background colour or SPIV: | Giug 4ng categories a name category - 621282 V8 yellow

None Colour
Select view + Recalculate ART2 - the neural network:

T normal View 1 pixel view 2 | vectorview3 rectangleview 4 circle view 5

None X/Yaxis Grid | Ruler
rectangle view 4, width factor 5

Figure 13 The A.I. Manipulator ART2 (Neural Network) GUI.
This is view-1 the 'normal' view.

By fine-tuning certain input parameters of the ART2 Neural Network such as vigilance, which is used
as a limit for the magnitude of the allowed mismatch inside one category and the amount of Learning
Cycles (LC), we are able to influence the overall performance of the Neural Network. The amount of
Learning Cycles should be in the range of at least 15 to 20 to be effective (50 is recommended, but

more time consuming). What is ‘uncontrolled’ in the ART2 algorithm is the use of a random in the

% For example the Perceptron, the first model of an artificial neural network and ART2’s predecessor, needed
supervised learning (Wasserman 1989). Other models as Hopfields nets and Bidirectional Associative Memory
(BAM) networks need training sessions as well (Wasserman 1989, p. 122).

46

initialization phase of the network calculation. It puts a tiny value'®, mostly in the range of: 0.001 —
0.1, in the array where the values of the nodes from the network will be stored. This small random
number will guarantee that a non-local minimum will be avoided if the algorithm gets ‘stuck’ in one of
these local minima. This has a side effect to the process itself: a specific category can change from
number depending on the initial random value. The initially processed vectors (input) however, are
still grouped together in the same categories.'”’ ART?2 uses these newly categorised vectors in order to

create a new output stream (added per category, in a block structure, one after the other).

p;=u + Eg(yj) *wDOWN ;
j

_ Pi
" L2NORM(p)

V.

i

" = TONORM(v)

4q;

Vi =f(x,-)+b*f(£1,-)
w,=I+a*u,

w.

i

Y = TONORM(w)

f(x)=0,if 0 < x < theta or f(x) = x, if x = theta

yi= zpi*WU[)ij
J

i

wDOWN ; = Ezleaming rate *d* p,* wDOWN
i

i

wUP; = 2 Elearning rate *d* p, *wUP;
i

L2NORM(v)) = [, v, +0.001

i

Equation 2 The Carpenter and Grossberg ART2 Model equations (Watson 1991, p. 83).

If ART?2 is resetting itself as a neural network, it does so in order to be able to categorize the vector
correctly according this principle: as stated in Rojas, Neural networks: “The purpose of the reset signal
is to inhibit all units that do not resonate with the input. A unit in layer F2, which is still unused, can
be selected for the new cluster containing x. In this way, a single presentation of an example
sufficiently different from previous data, can lead to a new cluster.” (Rojas 1996, p. 417). This last
principle of the design of the ART?2 algorithm will enforce a categorisation of the vector. Equation 2

(page 47) demonstrates the several stages of the algorithm. The three layers of the network are

1% In Equation 2, page 26 this is shown for the normalization phase of the vector: LZNORM(v) + 0.001

%" This phenomenon can be observed in the examples of different type of views in fig. 12, 13, 14 and 15. The
colouring of the detected categories changed (the number of the category changed), but not the categorized
vectors. They are all correctly detected and sorted into the same previous groups. In future versions, control of
the fixation of the categories (random number control) will be done by the user.

47

represented by: the vectors: x,, p,, g,, u;, v,, w,and x,. The output layer of neurons is stored in

y;-And 1, is the vector to be evaluated. The variables: a b d, f, theta, alpha and vigilance all belong

102

to the model constants according Watson - (Watson 1991). As a consequence of its architecture and

1103

model ™, ART2 uses a so called hidden layer: when a vector (or neuron) is neither part of the Input

(7,) nor Output (y) layer it is called hidden (Nierhaus 2009).

53.2 ART2 GUI design topics.

As previously stated, looking at both the input and output data in different ways can help in
understanding why the data has been sorted into the different categories. Not only by using the
‘normal’ view (see Figure 13, page 46), but also by extending it with four other, different graphical
representations of the same data, this idea has as such been implemented in CACE4. These five
separated output categories, as detected by the ART2 neural network, can be viewed with specific
techniques of plotting applied. Each category is associated with a different colour. Not all entries are
located at clearly separated positions and therefore the use of colour coding is necessary to make an
easier distinction between the detected categories. As an example, a Brown (random(x) — white-noise,
n=500) fractal calculation was used as input. Vector v,_, has a length of 7 nodes and consists of a
sequential copy of 7 items (rational numbers in the range: 0.0 - 300.0) from the output of the Brown

fractal. For the next vector v,_,, copies of the next 7 numbers are used until all Brown fractal output

Category 1 Category 2
no:l— 41 no: 9 Category 1 Category 2
(0,0) ¢ x-ax 100 200 nod - 35 no: 17
y-ax %:".’-‘Z.‘i.- -*,.".\ ?.'} 0,04 ~"x-ox) 300
Ll XV
PR
(553
100 3.8 8
Rt
oo o o
i
gt
200 [, at’f
E
Figure 14 View 2: the pixel view. Figure 15 View-3: the vector view.

is executed: Vi-s00. The first view represents all vectors to be plotted in columns, each column
representing a different category'™ (see Figure 13, page 46).

The second view shows the same vectors, but now as single nodes plotted as (x,y) number pairs on top

192 Mostly hidden for the user except for alpha, theta and vigilance see Figure 13, page 26 for other input
parameters for the user.

193 Floreano and Mattiussi show that the resonance in the name of ART? relates to the fore- and backward going,
for weighting of the vector. Until either the vector is categorized (either in a new or already existing one), or the
network reset itself to new initial values. (Floreano and Mattiussi 2008)

19 This view, as of December 2015: CACE4 version 0.54.19, will be replaced by a new view altogether in one
of the upcoming updates (autumn 2016).

48

' They can be now only distinguished by the unique colour associated with the specific

of each other
category (See Figure 14, page 48 view-2: The pixel view). The third view involves the same plotting
techniques as the view-1 this time used for plotting the nodes connected by a line. (See Figure 15,
page 48, view-3: vector view). By plotting the vectors this way as super-positioned on top of each

other, the similarity (of the categories) of the vectors can be seen directly.

Figure

16 View-4: the rectangular view. Figure 17 View-5: the circle view.

A possible fourth view is to plot the vector elements as (scalable) rectangles (see Figure 16, page 49
view-4, the rectangular view). All vectors are also plotted on top of each other and can be scaled for
plotting only; this does not alter the original input. A fifth and final technique for plotting the vector
entries involves plotting the nodes of the vector as circles (see Figure 17, page 49 view-5, the circle
view). For scaling (size of the ovals) purposes only, correlation calculations have been applied as

well'%,

54 The CACE DATA Manipulator object group.

The DATA Manipulator group shares several characteristics: a simple dialog layout, together with
an input and output numerical display column. They are based on well-defined algorithms from the
domain of informatics and are available for use in many computer languages. They are therefore not
strictly based on mathematical formulas (like the STAT/STAPS group) but depending more on the
implementation of the functions (in the case of CACE4: LISP). Sorting — sort(), stable-sort() - and
replace — replace() - algorithms implemented in the LipsWorks programming environment and, as

such, defined by the Common LISP language standard, are a few examples.

195 While view-2 is a plot of (x,y) number pairs and the number of vector nodes is uneven (in this example 7
nodes) are used, there is a swap between x and y values. This explains why two blocks are observed, instead of
one. To avoid this way of plotting the result, it is possible to eliminate the x-value with a pruner object or by
changing the number of input nodes to an even number.

19 By executing the ART?2 calculation first, then calculating the spearman correlation of the pattern and scale the
result with linear scaling and then multiply the plotting coordinates with this result, it is possible to spread the
vector plot. This is a more experimental algorithm design and will probably change in the near future.

49

One other criterion for grouping together the four MATH DATA manipulators is their ability to split
the input into separated streams by means of using the index check-box <start-index>. By making use
of a jump size, one single stream can be treated as multiple — independent — streams and therefore

more complex processing (e.g. deleting) is possible.

54.1 Pruner.

The Pruner object (see Figure 18, page 50) acts as an all-round pruning tool for deleting items
from the input stream. The algorithm of the Pruner object makes use of the replace'”’ function of
Common LISP. It can be used in either of two ways: in the simple mode to delete a specific chunk of
the input stream (a-start to a-end), or, in a more complicated manner and together with the possibility
of creating ones own jump size, as a delete function, which can jump thru the input and delete specific
members of the input. The thus created new output will be accessible by the next object in the strategy

chain, attached to its output.

e0e DATA Manipulator-Pruner-13:31:53-25:11:2015

Manipulator Numerical Display
Index: Input: Output: Delete input

g B e Startindex Jump size [1-20] Or delete chunk
2 18.0 9.0

3 0.2 2.0 91 12 Start | start
4 9.0 8.0 2

5 0.3 101.0 2 End end
6 2.0 123.0 3

7 0.0 115.0 3
8 8.0 %.0 a

9 0.5 100.0 & 4
10 101.0 n7.0

1 0.6 18.0 6 5
2 123.0 82.0

3 0.7 88.0 7 6
1 15.0 7.0 0

15 0.8 7.0 7
16 %.0 109.0 9

17 0.9 8.0

18 100.0 9.0 10 8
19 10 7.0

» 17.0 82.0 i 9
2 11 9.0 12

22 18.0 810 10
2 1.2 9.0 13

% 82.0 %.0 1
25 13 122.0 i

% 8.0 87.0 . 12
27 1. 120.0

8 7.0 123.0 16 13
2 15 109.0

» 7.0 %.0 17 @0
3 16 7.0

2 109.0 16.0 i 0
3 17 7.0 19

3 85.0 7.0

3 18 12.0 20 LS
3% 910 7.0

37 19 85.0 (
8 7.0 7.0

39 2.0 95.0 18
) 82.0 103.0

4 2.1 2.0 19
2 9.0 7.0

3 2.2 2.0 20
44 810 87.0

Manipulator action history

ATOR-GUI "DATA Manipul » Give the Manipulator output a name | Data buffer size:
ator-Pruner-13:31:53-2 »

5:11:2015" 22184297 < process-name- 621016 > 10000
Show input only Select Deleting or Pruning action:
Show Delete Elements || Delete Chunk || Undo

Figure 18 The CACE4 Pruner.

197 LISP function (destructive): (replace sequence-1 sequence-2 &key startl endl start2 end2) => sequence-1
(Steele 1990, p. 408)

50

54.2 Merger.

The CACE4 merger object is a special one in this group of DATA manipulators. It can handle up
to 12 objects as input and merges them in five different ways. The names given to these five choices
are the same as those that have been used on the buttons of the GUI (see Figure 19, page 51).

1 - <Adding>: By placing al members of the separate input streams as a single block in a consecutive

order, one after the other: [all input 1, all input 2, ... all input 12].

Xnew = [Aj,Bi,--.,Ll.]

, where X new contains all newly added members i. The ordering of the blocks is shown
between closed brackets. And " iis the maximum numbers of blocks used (i = 12).

Equation 3 Adding algorithm.

2 - <Reverse>: By doing the same process as adding but now in reverse sequential order [all input

(max) 12, ... all input 1].

Xnew =[Li’Ki""’Ai] L

,where “iand new are the same as in equation 3.

Equation 4 Reverse algorithm.

eoce DATA Manipulator-Merger-14:25:56-25:11:2015

Manipulator Numerical Display
index: input-1 Output: Merging numbers.
0.1

= e.1 Select input streams

2 180 .05

3 239 g)

. s b5) NB Merging numbers:
s s e The order of connecting to the input of
6 13756826 137.5¢82¢. 3 the DATA Manipulator-Merger objects
7 495 determinates the order of input handled
g input-3 0 ¢ (first: input-1, second: input-2, etc.).
g 239 - 5

a 295 2

1 6.93¢0983 6

2 . 10

13 euts 9.0 7

1 o 192.1642¢ o

5 1.6089385

1 : a0 9

= input-5 [

18 .15 10

1 5.607877

» 2.0 il

21 input-6 9.0 12

2 5¢.790566

5 -3.4912363

2 9.0

2 input-7 0.

% b

27 -0.04837036

2

L input-8 85.0

E) 9.218791

31 -5.62695¢

32 9.0

3 input-9 o5

B 0.25
|35 -5.6420317

3 X

37 . 101.0

3 ergio) 81.8¢645

3 -1.120802¢

@ 7.0

a 0.6

ps input-11

a -2.2899752

@

5 123.0

% input-12 35.036793

a7 5.63¢16

@ 9.0

Manipulator action history

ATOR-GUL "DATA Manipul » | Give the Manipulator output a name | Data buffer size:
ator-Merger-14:25:56-2 »

5:11:2015" 28337157> < process-name- G21062 > 10000
Show input only Output type of merging
Show

| Adding || Reverse | Merge< | Merge> || Zipper

Figure 19 The Merger GUI.

51

3 + 4 - <Merge <> and <Merge > >: This is done by first merging all entries in one single list and
then sorting them in ascending (<) order [i-minimum, ... i-maximum], or sorting them in descending
(>) order [i-maximum, ... i-minimum)]. First the Adding algorithm from Equation 3 is used and then it

is sorted according Equation 5.

X,,, =sorted(X,)

, where sorted can be: < or >. And Xew contains all newly sorted members i.

Equation 5 Sorting algorithm. See section 5.3.3 for further details for the used Common LISP sort functions.

5 - <Zipper> : By merging all entries in a ‘zipping’ (or interleaved) way of ordering. Take one entry
from every input stream place them consecutive, one after the other in the list. Then proceed to the

next entry, until all members of all input lists have been placed.

[Ail’Bil’Lil’AiZ’BiZ’Lz‘3""’A' B, .L,

insBin>Lin] , where L stands for the maximum number of input blocks used.

Equation 6 Zipper algorithm.

This can be achieved even when the length of the entries (A, B and L) are not equal. It is important to
note that all merger actions can be performed with numerical input lists of unequal length. Each

calculation will be done until all input lists have been exhausted.

543 Sorter.
[] [] DATA Manipulator-Sorter-13:33:13-25:11:2015
Manipulator Numerical Display
Index: Input: Output: Sorting numbers of the input column
1 0.1 0.1 Select row of items to be sorted Jump size [1-12]
2 18.0 7.0
3 0.2 0.2 g 12
4 93.e 75.0 M2
5 0.3 0.3 z 2 |2
6 .0 7.0 3
7 0.4 0.4 3
3 85.0 7.0 4
9 0.5 0.5 5 a
10 101.0 7.0
1 0.6 0.6 6 5
12 123.0 75.0
3 0.7 0.7 7 6
1 15.0 76.0 G
15 0.8 0.8 =
16 %.0 76.0 9
17 0.9 0.9
13 100.0 7.0 10 8
| 19 1.e 1.0 1 o
20 117.0 77.0
21 1.1 11
|22 18.0 77.0 2 10
3 1.2 1.2
24 82.0 77.0 1
25 13 13
% 88.0 7.0 12
27 1.4 1.4

| Manipulator action history

ATOR-GUI "DATA Manipul » Give the Manipulator output a name | Data buffer size:
ator-Sorter-13:33:13-2 »
5:11:2015" 2210BE18> < process-name- G21038 > 20000
Show input only Output type of sorting
Show < | > || stable-sort< || stable-sort> || Undo sorting

Figure 20 The Sorter GUI.

52

The Sorter is a CACE4 object for sorting. Two basic types of sorting are available: sort and stable-
sort. Sort makes use of the Common LISP function sort() (see Figure 20, page 52). Stable-sort makes

use of the Common LISP stable-sort() function'®

. Both types of sorting can be used with the operand:
< and >. Together with the use of the jump size it is possible to create a unique selection of the input
list for processing by the sort algorithm. This results, as seen in the example shown in Figure 20, in
two sorted (x,y paired) outputs combined in one output stream. It is sharing its sorting algorithms with

the previous described CACE4 Merger object (see section 5.4.2, page 51).

544 Splitter.

The Splitter is the last in the series of four DATA Manipulator objects. It takes one input stream
and splits it into several others according to the user’s specification. Its purpose is to generate one
single output stream, but sorted in blocks (also called chunks), one after the other. Every chunk

contains a specific part of the input stream according to the index number.

e0e® DATA Manipulator-Splitter-13:33:59-25:11:2015

DATA Manipulator - splitter - Numerical Display
Index: Input: output-1 Split the input
1 0.1 0.1

; ;1:-0 = Create new output index first element jump size
4 9.0 output-2 ! 1 2
5 0.3 118.0

6 2.0 9.0 : 2 2
7 0.4 3
8 = output-3

9 0.5 4
10 101.0

1 2.6 J
12 123.0

B i output-4 G
1 115.0 7
15 0.8

16 2.0 ®
= Eo output-5 ,
18 100.0

19 1.0 10
20 117.0

2 1.1 output-6 "
22 118.0

23 1.2 2
2 82.0

25 1.3 output-7

% 88.0

27 1.4

3 5.0

2 15 output-8

30 7.0

31 16

2 109.0

2 = output-9

3¢ 85.0

35 1.8

36 91.0

H = output-10

39 2.0

) 82.0

41 2.1

o = output-11

3 2.2

w“ 81.0

45 2.3

46 2.0 output-12

& 2.4

48 9%.0

Manipulator action history

List.” #<CACEIV-PACKAGE: : » Give the Manipulator output a name | Order of output
CACE-DATA-MANIPULATOR-GUI »

“DATA Manipulator-Splitt » < process-name- G21044 >

er-13:33:59-25:11:2015" 2 »

1EBF798> Show input only Data buffer size:
Show 10000

Output type of splitting

Split Stream || Undo Splitting

Figure 21 The Splitter GUI.

19 The two LISP functions are both destructive on the original sequence, therefore a copy of the input is used
(sort sequence predicate &key :key) => sequence, (stable-sort sequence &key :key) => sequence (Steele 1990, p.
408).

53

Together with the associated jump size, one stream will be created containing up to twelve chunks.
(output-1, ... output-n). The newly generated chunks will also be shown in the output views (with the
maximum of twelve separate views). (see Figure 21, page 53).

To obtain a single block of the input stream it is either possible to generate just one block, or in case

more than one is created, the pruner object is used to remove extra, unwanted blocks.

5.5 The CACE MATH Manipulator object group.

The MATH(ematical) Manipulator group is, in contrast to the previously discussed DATA
manipulator group, based on a much more complicated mathematical description. It can either process
the data according known mathematical processes (mostly statistics), or use processes that are based
on other, more complex techniques. Information Retrieval offers tools for more elaborate techniques
for a different kind of analysis. In addition, the programming techniques for making GUI’s capable of
changing the background colour quickly, are of great help in making a decision about the generated

output (for more see section 5.5.3, page 58).

551 Clusterer (CLUS).

The ‘Clusterer’ can be regarded as an object with only artistic process output in mind. The
‘Clusterer’ acts as a ‘cluster creating’ algorithm. Up to ten clusters can be independently positioned in
the window, with separated values for x-centre, y-centre, width, height, the gravitational constant and

massal and massa2.

eoce MATH CLUSTERER Manipulator-CLUS: Clusterer-17:38:21-26:11:2015
MATH Clusterer (CLUS) - Graphical Display

=

MATH Clusterer (CLUS) - Numerical Display

Index: Input: Output: MATH-clusterer action history | Graphics: view values Select | Calculate Rectangle Cluster property values

1 520 [) 3657504682 size - 401" tactor: (10D Clusters | Use Newton's law of gravitation: F = G*((m1*m2)/r2) (NB: G = 6.674215E-11) Cluster Colour

2 51.0 52.0 50: "DISPLAY-OUTPUT-FROM-C » zoom factor: -0D0 . inde jidth heigth 1

a5 B s o touse: | index x-centre y-centre widt eigth g-const m m2 T -
: 52: "DISPLAY-ANALYSED- X position: |50 1 1 100 50 10 20 66742 [10.. | 10..

g B - [UT-FROM-COMECTION:” * stz § 2 200 75 30 60 667427 | 5.0 20

s ae : e 20 || s o742 : .]

[3 9.0 78.0 123" y position: 30 3 300 1. 60 90 6.674z 100 10.0

7 520 3 532 “OE4: colaulated nen 3 4 0 o o 0 o o o 3 |pink

output” % ixel size:

s 70 n.0 Ut S<CACETY. PAOAG Pixel size: |3 . 5 0 0 o o o o o

9 8.0 s MATH CLUSTERER Manipulator » 6 0 o o 0 o 0 o 4 pumpEl

%0 .0 -CLUS: Clusterer-17:38:21- » | Numbers counted: O al) 7 0 0 o 0 o o 0

n e 5 26:11:2015" 21A47007> ;

= =8 L Give the MATH Clusterer output a name 8 0 o o o o o o & |cvelow

N BN B o133 © 9 o o o o o o o o
9 < process-name- G21 >

o o 50 P 2 1. 0 o o o o o o

15 83.0 7 Select type of grid/axis to display: :blacl

® se o s 7

= == 8 None || X/Yaxs | Grid || Ruler o

1B 10 8.0 8 [igrey

1 100 9 10 =

» e %.0 Select type of statistical clusterer manipulation: 9 ightblue

:; :;:: ;; o PlotInput || Calculate Cluster Properties || Generate new Output ®

Figure 22 The Clusterer GUI.

54

All clusters use the basic equation of Newton’s Universal Law of Gravitation (see Equation 7). All
parameters of the equation can be used for alteration of the Cluster output. According to Newton’s

equation, there are two bodies with mass m1 and m2.

FoG ml*m?2
- ,,2 , where m1, m2 are masses, r is the distance and G is the universal gravitational constant.
(G = 6.674E-11 N m2/kg2).

Equation 7 Newtons Universal Law of Gravity.

Larger masses result in a larger gravitational force. Accordingly, the clustering effect will be larger.
The size of the squares can be altered as well: using larger cluster areas will also result in larger
clusters. Figure 22, page 54, shows us the GUI of the CACE4 CLUS Object: all coloured rectangular
boxes are acting as independent areas of gravitation, with their mass centred onto the line in the

middle of the box'®.

Math Generator-Tendency masks-17:37:28-26:11:2015

DATA Manipulator-Pruner-17:38:2-26:11:2015
‘Manipu .

Figure 23 An example of a simple setup for working with the CLUS object in the CACE4 Processor window.

1% A coloured box in the GUI is a graphical representation of m1. Inside its boundaries is an area where the
cluster algorithm is active. It can be freely positioned in the x, y space. Changing the values for width and height
can alter the size of the box. Inside this box a small line, from top to bottom, is used as a representation of the
centre of mass (m1). According Newton’s Universal Law of gravity, all mass is centered into a single point in
space. By skipping the y value and only using the x value of the calculation, this centre of mass coincides with
this drawn line inside the box. By representing the original input as the second mass (m2) as pixels, if having
enough mass, they can be drawn to this centre-line. The values for m1 and m2 can be altered in the GUI.

55

When low mass is entered for both m1 and m2, the pull of gravity is low and according Newton’s Law
of Gravity the entries inside the box will ‘fly’ away and be dispersed over the graphical display. If a
higher mass is used for both m1 and m2 however, the entries (shown as blue dots) will pull towards
the centre of gravity (the vertical line in the centre of the box), and displayed at their new position as

light-green dots.

Figure 23, page 55 shows a typical, simple setup to work with the CACE4 CLUS Object. It shows
how to generate chords from a previously generated data stream (Tendency masks are used in this case
as data source). With a CACE4 Translator object at the end of the strategy chain, the newly

calculated output (showing up as light-green dots in the GUI, see Figure 22, page 54) can be sent to
the CACE4 Score object (in the Project window)110

552 The Statistical Manipulator (STAM).

This is also one of the more complicated objects in the CACE4 program. It gives access to a

whole range of statistical functions used for doing manipulations on the input list.

[} [] MATH SIEVE i TAM: isti i 21:50:39-8:12:2015

MATH-sieve Graphical Display

@0 x-oxX - 199 <7 Toep. """ . 3ep . .. - 400" “so0 600 700 300 900 1000 1100 1200 1300
voox [17 - : X - 22 .

100

200

MATH-sieve Numerical Display

Index: Input: Output: MATH-sieve action history | Graphics: view values 1 = normal
1 137.54824 -21.11111 44: "DISPLAY-INPUT-FROM» T isti i i 2 = min-max plotted
5 ype of statistical manipulation p
2 10214424 199.62415 -CONNECTION:" " size = » | Z0Om factor: 1.0
3 54.790566 NIL jgaﬂ“r(enn UTPUT-FROM-C normal 3 = mean per no elements 2
& » - o | X position: 50 N

4 9.218791 NIL ONNECTION: " "0B]-ID-G21n p min-max 4 = median plotted
5 81.84645 NIL 280.3658596612 size = 5» .
6 35.036793 NIL 00" y position: |30 mean 6 = variance multiplier 3
7 25.55178 NIL 47: "CACE4: calculate M» ‘median
g - e - ath Sieve 1" #<CACEIV-P» | pialsiza: | 6 = deviation plotted

ACKAGE: : CACE-MATH-STEVER variance 7 = product-moment correlation coefficient (Pearson r) plotted
9 114.60015 NIL “GUI "MATH STEVE Manipu» = product-moment correlation coefficient (Pearson) plotte:
10 -3.4123702 NIL lator-STAM: Statisticaly Numbers counted: O deviation rank order correlation (Spearman rs) plotted
1 128.42389 NIL Manipulator-21:50:39-8» i A
12 29.117981 NIL ;ZQE;;&?EEE?FMM Notes: correlation 8 = linear Regression
13 75.1594 NIL _CONNECTION:* " size = » < notes G21301 > lin-regression 9 = histogram, max. amount of bins: 14
14 33.684876 NIL 00" histogram
15 156.98563 NIL 49: "READ-OUTPUT-FROM-C5 &l
16 154.82431 NIL ONNECTION: " "0BJ-ID-GZ1»
17 11.457027 NIL ;g?-“s“%"’lz size = 5§ Select type of background colour for display:
18 9.205042 NIL

51: "CACE4: calculate My

None Colour

19 80.93449 NIL ath Sieve 1" #<CACEIV-P»
20 195.65444 NIL ACKAGE : : CACE-MATH-STEVE »
21 66.52225 NIL -GUI "MATH SIEVE Manipu» o

Lator-STAM: Statisticaly Select type of grid/axis to display:
2 124.086846 NIL :

Manipulator-21:50:39-8» 5 .
23 183.64946 NIL £12:2015" 259FSCCFs. None | X/Yaxis Grid Ruler

Figure 24 The STAM GUI.

"9 Due to the fact that the cluster algorithm adds single x values before any y-value, the data output stream will
be doubled in size. Also when using the Translator object, Absolute timing instead of delta timing should be
used.

56

Besides the basic tools as Minimum-Maximum, Mean, Median, Variance and Standard Deviation, it
gives access to two correlation calculations, Pearson (product moment correlation coefficient) and
Spearman (rank order correlation), as well as Linear Regression and Histogram analysis.

All statistical procedures create a specific output that can be used by the next object in the CACE4
strategy chain of connections. The output calculated by this object is as diverse as all the statistical
procedures used: from only two <max-min> values, up to the maximum number of values, which

equals the number of entries in the input <normal>.

The output created by using one of the following procedures (<button-names>):

<normal>: just copies the input, and displays it.

<min-max>: creates just two numbers: the minimum and the maximum value of the input list.
<mean>: The exact number depends on the amount of elements which should be grouped before
taking the mean. (See Figure 24, page 56: text-edit field: “3-mean per no elements”). When using the
maximum amount (= number of entries input) the output created is just a single number: the mean. In
the case of Figure 27 (page 59), three are used. Therefore the maximum amount / 3 output elements is
created, which is equal to a third of the size of the original input.

<median>: Here there is just one number: the calculated median is the output.

<variance>: The variance (per element) can be altered (multiplied) by: text-edit field variance
multiplier <deviation>: Creates three numbers: The Standard Deviation, the Absolute Deviation and
the Squared Deviation.

<correlation>: There are two different correlation calculations: Pearson and Spearman as the
calculated output.

<lin-regression>: According to a linear regression algorithm,""" only four numbers in strict order are
calculated. The first number (n) is the number of entries in the input. Followed by m: the slope of the
least-square best fit line, then b: the y-intercept of the least-square, best fit line. Then as a fourth
number, rs: the squared correlation coefficient.

<histogram>: The output created is the number of items per bin of the Histogram analysis. The exact
number is variable, but mostly depends on the number of bins (see Figure 24, page 56), and ranges
somewhere between 5 and 14 bins. Due to the character of the algorithm used however, it looks for the
optimum number of bins: the results are variable. See at the end of section 5.5.3 (page 63), for further

explanation of the Histogram algorithm used.

""" The functioning of the algorithm is explained in more detail in section 5.4.2.7.

57

Math Generator-Linear Congruential Method-16:45:44-27:11:2015

DATA Manipulator-Pruner-16:46:7-27:11:2015

Figure 25 Example of a setup centered round a STAM object in the Processor window.

Figure 25 above, shows a simple strategy setup for working with a STAM object in the CACE4
Processor Window. In this example, a linear congruential method, a special algorithm for generating a
pseudo random sequence''?, acts as a data generator. The Pruner is used to remove all x-values as
generated by the MATH Generator object, thus guaranteeing a stream of maximum random numbers
(the initially generated y-values). A MATH Manipulator Scaler object, in combination with a
Translator MIDI object, takes care of the final steps in the strategy chain, by transforming the data into

pre-MIDI data and ‘sending’ it to the CACE4 Score object (in the Project window).

553 The different STAM processes.
<min-max>.
@@, xax -, 100 " 200. - .300. . - . - 400° - 500 600
y-ax [*¢ K rik X) ° i
100
200 * maximum = 199.90688

Figure 26 Minimum and maximum display in the STAM GUI.

" According: X, =(aX, +c)modm n =0, see Moore (Moore 1990, p. 409) for more detail of the
algorithm.

58

These two are basic quantitative qualifiers: minimum and maximum are really operating as a pair
together. They cannot be omitted in the statistical approach of CACE4 as they are often used for
finding ranges in the data that is being processed (see Fig. 30). Its effective range; < —,00 >,
depends on the implementation of the LISP system and Operating System of the computer used.
(-NAND and NAND are also used as an error flag for the OS, though mostly not in LISP, but more in

imperative languages as C and C++.)

<mean>.

©09 xax - 199 T o007 . 300 . .. - 400 * sp0 600 700

y-ax [+

100 . NI
- IRV . mean-per 5 elements

mean for all elements = 93.6268

200

Figure 27 Display of mean.

In this case the orange coloured line plots the mean of 5 consecutive elements of the input list. The green line indicates

the mean for all elements in the input list: X =89.799...

With the use of mean as a selected statistical calculation, there is the possibility for creating a kind of
line bender (keep in mind that it can be used as a melody creator/bender as well). The data is first
analyzed, which will produce a mean of the data group, with a variable mean per number of elements

in the range of: x E[2,K ,n_] (see equation 9 for the formal description). This gives smoother

max

numerical patterns with fewer jumps in the line. The minimum and maximum value (of the orange

coloured line) will be more flattened if more numbers are used'"”. Equation 8 shows a more

generalised description of mean used in other statistical processing in CACE4:

Equation 8 Mean formula.

Xvufpm = (xl X2 ’L ’Xn) , Where X output is a list of the all calculated mean values.

Equation 9 A variable segmented Mean.

113 For now, no interpolation takes place between adjacent values. Therefore the (orange) line as viewed in
Figure 27 will be outputted as a compressed version. In a future version of CACE4 extra options will be
available for interpolation purposes.

59

<median>.

@09 xax - 199 7T 209" . 300 . .. 400) 600 700

y-ax [¢

100

200

Figure 28 Display of the Median.

NB. In this case n=500 (= even number of members in the input list) therefore the Median = 92.199600....

The Median can best be described in an algorithm. First create a sorted list by using the operand: < on
the input list. In case of there being an uneven number of members in the input list, take the middle
member of the sorted row. When the amount of members in the input list is an even number, take the

middle 2 numbers of the sorted list (<) and divide them by 2. The resultant number is the median.

When the total of the members is uneven Equation 10 is used:

_ ot i)

M 2 , (I = sorted list: <)

Equation 10 Median for i = uneven.

And when total of the members is even Equation 11 is used:

M

= Lu12, (i = sorted list: <)

Equation 11 Median for i = even.

<variance>.

600 700

©,0) 9 ‘xax -

y-ax [

100 | -

200

Figure 29 Display of the Variance.

60

The variance can be described as the measure of the spread of the numbers. As such, it calculates the
expectation of the squared standard deviation per entry from its mean in the input stream''*. The
process results in generating new output (plotted as red dots, see Figure 29, page 60) with a much
smaller range than the input stream (plotted in blue). Because the result is stored in the output, the
variance calculation can be used to generate new musical material. Melodies, but also rhythmic
patterns can be obtained with the calculated output stream. The mean-variance (the variance of all

members), is plotted in the GUI of CACEA4.

> Ef_l(xf—K)z—(E'f (x, =K))*/n
s = = i=1

n-1

where K is a constant (in this case: K=mean). X; are the members
2
of our input data. And S is the variance.

Equation 12 The Shifted data Variance.

<deviation>.

The Standard Deviation, together with the absolute and squared deviation (as plotted in Figure 30) of
the input list, tells us something about the deviation of the members from the input stream. The output

will consist of the three number values as plotted in the GUI (see Figure 30, page 61).

©0¢ xax - 199 7 0. "7 " . 300 . .. 400 * 500 600 700
T < T e O o
-ax [¢ : : . ; :
y - .)
s
.
: ' o R S n absolute-deviation = 56.699437
200

Figure 30 The display of the Standard Deviation, the Absolute Deviation and the Squared Deviation of the input
stream.

n
s = 1 E (x, = %) X . .
n n i Where X; are the observed sample values and stands for their mean. n is the number of

i=1

entries, and Su is the standard deviation.

Equation 13 Standard Deviation formula.

!4 CACE4 uses the shifted data variance algorithm. The red pixels represent a weighted, individually calculated
deviation from the variance.

61

<correlation>.

In general, correlation, as a mathematical/statistical procedure, is used to show a correlation between
members of a data set. This is interesting for finding similarities between unrelated separate input
streams, as is the case with the Pearson product moment coefficient, mostly used in CACE4. The
Spearman correlation (or rank order correlation) is a special case of this Pearson correlation function.
It is used for describing the relationship between two variables using a monotonic''® function, and is as

such less sensitive to members who are further away from the normal distribution.

The different correlation approaches will be discussed in more detail in section 5.5.5 (page 67):

Correlator, together with the third correlation calculation in CACE4: Kendall t.

(0,0) 9 © -x-ax - " 'ipg c. 200 sz <L . 400 . se0 600 700

y-ax [+

wo | T e LT T e pearson = 0.016660674972099488
:) :) " spearman = 0.01550808812941007

200

Figure 31 Display of the 2 different Correlation calculations.

The two numbers displayed in the GUI (correlation coefficients) are available as an output with 2

entries for further use.

<lin-regression>.

Linear Regression is a somewhat different approach than the processes previously described. It is used
to find the line of best estimate and to find the regression pattern in the data (shown as the red line in
Figure 32, page 63). As such it is also a more complicated process, but can be used in finding a linear

direction of the data in the input stream.

y =X/3+E ,where X

random variable)''®.

denotes the transpose, /3 is the intercept and € is an error variable (a non-observed

Equation 14 Linear Regression formula (generalized form).

"5 A monotonic function is a function where all numbers are entirely increasing or decreasing. For all x and y:
f)=f(y)or f(x)=f(y).

116 In linear algebra the transpose is defined as an operator, which is a matrix, flipping over its diagonal.

The intercept is defined as a point on the y-ax where the function intersects with the y-ax (Also called the y-
intercept or vertical intercept).

62

0,0 ¢ x-ax. . 100 - 200 300 400 500 600

y-ax

we | . .-~ Slopeofleast-squares bestfitline m = -0.011207606074877794
o L " y-intercept of least-squares best fit line b = 87.69902245481927
- squared correlation coefficient r = 0.011271503713601059

200

Figure 32 Display of the Linear Regression calculation.

As can be observed in Figure 32 the generated x-values''’, previously plotted, are omitted in the
calculation as well as in the plotting of the data (GUI). The line plotted shows the slope and direction
of the linear regression of the input list. As previously described in section 5.4.2, the output stream
consists only of four numbers''®. For now there is no direct relation of these four numbers with a
musical process'”’. However the slope of the least squares (m) can be used as a selection criterion for

sieving the generated newly calculated input (see section 5.4.4 for further detail about this use).

<histogram>.

(@,0)

-, 100 T a0t T - 300, . - . - 400") 600 700 800 900
y-ax | ! Tk ;! T i

optimized bin-width = 15.638933

number of bins = 14

100

number of entries = 500

200

Figure 33 Display of Histogram calculation of the input list.

A Histogram has been implemented as an alternative way of grouping the input data. The algorithm
splits all entries according to their y-value into discrete bins (the x-value of the plotted xy-pair is
omitted).

With the aid of a special histogram bandwidth optimisation technique, the data can be put into flexible
sized bins. The algorithm is implemented with this flexible bin size approach in the manner as has
been proposed by H. Shimazaki and S. Shinomoto (Shimazaki and Shinomoto 2007). The number of

bins can be entered as an initial maximum value for the algorithm. The algorithm will find an

"7 For plotting purposes in all other statistical plots, generated x-values are the index numbers of the member in
the data and are the actual index position of the member itself in the data (list). In linear regression this generated
x-value is omitted and only the original input values are plotted.

18 The first number is the number of entries in the input (). The second m: the slope of the least-square, best fit
line. Third b: the y-intercept of the least-square, best fit line. Fourth r: the squared correlation coefficient.

"% In future versions of CACE4 a ‘prediction’ based object will be added. This will make use of the linear
regression algorithm in order to calculate new data for the output stream.

63

optimum bin-width value (see Figure 33, page 63: printed in light-green: optimised bin-width)
Therefore the exact number of bins (Figure 33, in yellow) detected can vary from the one entered. The
output (mostly 10 to 20 entries) will be stored as a stream consisting of the number of entries per bin,

in sequential order from low to high.

554 STAPS: a STAtistical Property Sieve.

Although sharing the same statistical calculations with the previously described CACE4 STAM
object (see section 5.5.3 for a detailed description), the calculation methods are used in a totally
different way for generating a totally different kind of output. The ST Atistical Property Sieve or
STAPS acts as a statistical procedure sieve. The STAPS object works in 2 separate stages: first the
analysis of the data according selected statistical procedures (see Figure 34). Then these found
statistical values are used as parameters for constructing a new value. This ‘new’ value is obtained by
generating a random number and checked if this new value is inside specified boundaries. If found
true; use this number otherwise, omit value and generate a new one until a number suits these checked

statistical properties. This procedure is according to the way a sieve algorithm functions.

eoe MATH PROPERTY SIEVE Manipulator-STAPS: Statistical Property Sieve-17:3:46-28:11:2015
MATH Statistical Property Sieve (STAPS) - Graphical Display.

MATH Statistical Property Sieve (STAPS) - Numerical Display
Index: Input: Output: Statistical Properties. isti istical Property Spreading Min Spreading Max | Show Segment Size
1 160.6661177131430200 122.5486331726530600 Select one of more Properties o lise: - 91
L) Tt U et 1< M owo | oo | 81 N
3 212.535115152259500 £5.7309916626639100 - Minimum value X 2
F e S v A o0 | oo @
s s ey 156, sTee1s21400 . 3
6 105.1857725799639900 185.9919552726361200 3-Mean 20| Mean per no. elements | 3~ Mean -5.000 5.000 T
7 132.6713633324489800 17.915278700435400 . X
8 76.4029333096316200 84.4068653054765500 4 - Median 4- Median -1.000 1.000 e |
B 68.8166932293465600 93.5377701306264300 - o
5 - Variance . iple .
I 169.159086075515700 93.7927925168561700 10| Variance multipier | 5 _ yariance -1.000 1.000 6 20
n 106.9917948305813700 15.1806695166726500 16 - Standard Deviation L)
2 223.9891613807734800 169.3229742989235300 - 6 - Std Deviation _3.000 3.000
13 198.7835359948916200 143.7144851386741200 7 - Pearson: Product-moment correlation Os —
1 225. 7134875151100 135.0521806469023400 — 3 o 7- Pearson (1) -0.0100 00100 20 |
& e 8 - Spearman: Rank-order correlation 3
16 1¢0.2874077432446700 119.1649735493290900 -l 8~ Spearman () 00500 0.0500 . =
7 181.475732631820100 191.95174028962¢0400 . e {10
18 65.7484367966177700 234 ga258saS6835T500 10 - Histogram . §
19 92.1388593359129400 144.0567902021034600 14| Max. # of bins DL Recreseor ~0.0500 0.0500 20
» 133.163808855402700 155.479446911377900 . .
= B Order of properties calculati 10 - Histogram -0.0500 0.0500
2 185.506972143284500 76.6364422931764200
MATH-property-sieve action history Graphics: view values Select type of statistcal property maripuiation:
2587: "GENERATE NEW OUTPUT ith the properties:” * size = 10"
2588: "DISPLAY-OUTPUT-FROM-CONNECTION: " * size = 950" Zoom factor: [1.0 Piotinput § Calculate Properties JilGanaratened OpULE
2590: "DISPLAY-ANALYSED-OUTPUT-FRO-COMMECTION:* * size = 10 property order = (1 2 9)°
2591 "CACES: calculated new output™ #<CACEIV-PACKAGE :CACE-MATH-PROPERTY-SIEVE-GU “WATH P &y position: |50
ROPERTY SIEVE : Statistical Property 13:46-28:11:2015" 24B1F59F>

Figure 34 Display of the ST Atistical Property Sieve or STAPS GUI.
The original input list is plotted in blue and the newly generated output in light-green. NB Notice use of coloured
background GUI option.

The CACE4 STAPS object has a variable analysis window size for every statistical function.
Therefore an independent optimal analysis window size for every selected calculation is used. Because

the algorithm has to makes multiple calculations, the possible order of selecting a statistical procedure

64

= [calcl,calcz,..calclo]

influences the output: Reae ,where R, represents the order of all chosen

cale
calculations. The output of calcl is used as input for calc2, up to the last calculation selected.
Therefore, unselecting and selecting in the appropriate order can alter the rank order of the calculation
sequence. The created order will be shown in the ‘Order of properties calculation’ text-display-field.
Select <Calculate Properties> will obtain the initial lists with calculated values. The results, as lists of

numbers, will be displayed in the GUI in the column: ‘Calculated Statistical Property values’ (see

Figure 34, page 64).

After the initial analysis, it is possible to rerun the analysis after alterations are made for the variables.
This procedure can be re-ran until the results look satisfying. The final result is obtained by executing
the calculations with the generated sieve properties: select <Generate new Output> and wait for the
result. As a feature of the GUI, alteration of the background colour is possible for all CACE4 objects.
By pressing the mouse and moving left <-> right over the object output display area, the background
colour can be altered. By slowly changing the background colour from blue to dark-green, the two
different coloured pixel groups blend with their particular background colour. This helps in focusing
from original input to generated output and vice versa, making a comparison between the original
input and the output result much easier. The underlying algorithm design makes it possible to obtain a
wide variety of either close imitations of the input list. e.g. by using small analysis windows (Analysis
size <= 2), or less related output (analysis size => 20). In addition to this, a particular order in
processing influences the outcome of the process as well. To obtain a satisfying result, several
attempts must be made together with some experimentation with the values of the independent sliding

analysis window.

Math Generator-Mira-17:5:9-28:11:2015

Figure 35 Example of a small strategy setup for using the STAPS object in the CACE Processor window.

65

In a CACEA4 strategy chain a STAPS object can be used to create sets of numbers with calculated
imitations of the original input stream. As an example strategy setup see Figure 35 (page 65), where a
CACE4 MATH Generator a Gumowski-Mira fractal calculation is used (see Figure 36, page 66).
2(1-a)x®

F(x)=ax+ >
X

xn+1 _yn _F(xn)
yn+1 _'xn +F('xn+1)

Equation 15 Gumowski-Mira fractal set of equations.

NB Equations are according Hans Lauwerier (Lauwerier 1987, p. 108 - 109).

® (] ! Math Generator-Mira-11:42:3-9:12:2015

Generator Graphics Output

T o100

300 200} -100 €,0) ko 100 T -+ 200 300 400 500 600 700
y-ax

200

Index: Output: Generator action history ~Graphics: numerical values Gumovski-Mira Equation (fractal) a[-10.0-10.0] 0.41

1 2.39 RATOR-GUI "Math Gene » . xn+1 = 2axn /(1 +xn2) - xn-1

2 4.95 rator-Mira-11:42:3-9 » 200m factor: 16.0

3 6.9340983 :112:2015" 21FEE41B> Max. iterations (x-axis) 500 b[-10.0-10.0] 1.0
8: "DISPLAY-GENERATE » ition:

4 1.6089385 ; X position: 20
D-OUTPUT:" " size = » o .

5 5.607877 1000" “ Start iterations (y-axis) 1 x[-10.0-10.0] 2.39

6 -3.4912343 9: "CACE4: calculate » Y Position: 15

7 _0.04837036 Mira fractal.” #<CA » Select type of Mira calculation: y[-10.0-10.0] 4.95
CETV-PACKAGE : : CACE-M » A fo

B B ATH-GENERATOR UL » || T X@I SiZe: 2 Xn+1 = 2AXn /(1 +Xn2) - Xn-1

g [FEHCEERD ath Generator-Mira-1 »

10 -1.1208024 1:42:3-9:12:2015" 21 » | Numbers generated: 0O

1 -2.2899752 FEE418>

12 5.69416 10: "CACE4: Display: » _Notes:
XYGRID-SYSTEM-3-GEN »

B e ERIC)." #<CACEIV-PAC » <notes G21274 >

- o, e KAGE : :CACE-MATH-GENE »

15 9.292561 RATOR-GUI "Math Gene »

16 -0.7698469 rator-Mira-11:42:3-9 »

17 4.2065945 112:2015" 21FEE418> Select type of background colour for display:

18 -6.4500735

19 _3.6093867 None | Colour

20 -4.5905624

& e Select type of grid/axis to display:

22 2.703997

23 1.7986071 None | X/Yaxis Grid || Ruler

Figure 36 Display of the original GUI of a MATH Generator window.
In this case we used a Gumowski-Mira fractal as input for the STAPS Object.

After generating 500 numbers with, in this case a fractal f(x) with output according to equation 16, an
informer object can be attached directly at its output, sin order to view the generated data in a different
way (see Figure 35, page 65, for a possible CACE4 strategy chain). The difference in the plotting of
the data is caused by instead of plotting them as number pairs (X,y), a new x-value is generated and the
original (x,y) number pairs are both plotted as independent y-values. In plotting the Gumowski-Mira

fractal this way we can observe a link between the original x and y value (see Figure 37, page 67).

66

2,0 N 100 200 300 400 500 600 700 800 900 1000} 1100
— - — —
y-ax entete e e et e st et el g s et N LA . A O
> CR) Pen, " s T N I 2 .t . S P
. . » . O 2 hK) L)
4 . -~ 4 s b | . + .
- - . . - .o
CE) - ' * -
e
100 “e? S oz !
- .
Jot
...............
[,,‘. . o . S -
. P . L e
200 [os PR N NCOCH|
i B . .
PR N AN e NOBCHE
. .
oo |t et o T e e T e T e e fiaiimiuin = 300.0

Figure 37 The output of the Gumowski-Mira fractal displayed in the Informer object.

Differences can now be seen between the original Gumowski-Mira fractal displayed as in Figure 37
(page 67) and the data displayed in a second Informer object (see Figure 38), attached to the output of
the CACE4 STAPS object and displaying the newly generated data.

(0,0) 19 100 200 300 400 500 600 700 800 900 1000, 1100
. = T . . —— : T T 5 T —— i =5-0460978—
y-ax c .t . i ;i o . i .
v e e R . . [y - +
I .
. T . [. se ® Seze ks
s e ORI AN 1 Y AEE A LEEN
» S t e = . Y * s r
R URED St L . . e : AN o N
w0 [Att e de T i e e Y e R SRR EERURRCAECRNR)
e 0 . BINK] [TTe] , IR R IRNE PR AR ORNaK] K Fy
-~ ISRLRRDE] ™
o .
PR RS P ANEREE .
e A & 2
*ee e * D . K
"~ R S * . sey ol o . o e 130l
200 |eo, te e d et S A AHEEECE CHRENI veer Ty
RN e FEEEN . . R 2)
. 'S % oy
LY 1 " . . cee pELNY)
- % ¢ oLyl 4 4 + soeo
. . .
u -
o 2 maximum =296.26837

Figure 38 The output displayed in an Informer object after STAPS has been used.
NB The output of STAPS changes every time it is used. There is a random involved in the algorithm.

The outside shape of the original Gumowski-Mira fractal output is still recognizable, although all of
its displayed members are newly generated numbers. All is done according to the parameter settings in
the CACE4 STAPS object window (GUI display see Figure 34, page 64). In this case it uses only
three properties: minimum, maximum and the linear regression of the input stream to create a new
series of numbers as an output stream.

Because the first step in the algorithm number ‘creation’ is done with the aid of a random number,
rerunning the process in the CACE4 STAPS object will always result in different numerical output,

even if no parameters are altered.

555 Correlator.

This section focuses on the use of the ‘Correlator', a CACE4 Manipulator object based on three kinds

of different correlation calculations. It is checking the input by a correlation algorithm for finding

67

correlated'*’ content in one, or between more, input patterns. In this particular case the two input lists
(as stream 1 and stream 2) have both their own input streams with independent correlation type and
correlation value. The selected input streams are then mixed before processing takes place, according
to choice: added, sorted or ‘zipped’ (interleaved). The Correlator calculates two new output streams
either of which can also be added, sorted or interleaved according to choice. Figure 39 (page 68),
shows us the design of the algorithm for the CACE4 Correlator object. The order of attaching an
output of a CACE4 object to the input of the CACE4 Correlator object is also the order in which the

input streams will be used for doing the correlation calculation'?'.

Figure 41 (page 72), shows as an example, a possible setup of a strategy in a CACE4 Processor,
involving the CACE4 Correlator.

Since correlation has been defined as a mathematical equation for finding a correlation between two or
more points (mostly taken from a larger data set), it can be used for finding a certain mathematical
relation between these detached datasets. This relation can be expressed in the output r (= correlation

coefficient) with a certain range: r € [-1.0, 1.0] for Kendall T (tau) and r € [0.0, 1.0] for Pearson and

Spearman. For Kendall T this means if r is -1.0 there is perfect disagreement between two rankings.

Input Stream 1

l

- correlation type
(pearson, spearman or kendall-tau)
- amount of correlation
(r=10.0,...,1.0])

Input Stream 2

- correlation type
(pearson, spearman or kendall-tau)
- amount of correlation
(r=1[0.0,...,1.0])

!

Mix INPUT Streams by adding,
sorting or zipping.

v

Correlation algorithm

o Mix OUTPUT Streams by adding,
iy sorting or zipping.

Figure 39 The Correlator algorithm design.

In this particular case two independent input lists (Stream 1 & 2) Both input streams with its independent correlation
type and amount value. Then mixed according choice: added, sorted or ‘zipped’. Then the Correlator with its entered
parameter values makes the calculation. And the output can either be added, sorted or ‘zipped’, according to choice.

120 Correlation is a measure for linear dependency between 2 numbers.
121 Tn future versions this will be made available as a feature in the GUI itself. This enhances further flexibility in
experimentation with the algorithms and their correlation values.

68

With r = 0.0 there is an independency of the two elements and with r = 1.0 there is a perfect
correlation in ranking between the two elements. Correspondingly, when the values for Pearson and
Spearman are r <= 0.0, there is negative correlation between the two sets of data. At the other end of
the scale, with a maximum value of » = 1.0 it will provide a strong correlation of the used dataset.
Figure 39, page 68 shows the description of the algorithm used, in this case with two independent
input streams (as a LISP type: list). Both input streams with their own independent correlation type
and amount value, are mixed according to choice. The generated output can then be recombined into

new, ordered streams according to the selection criteria set.

The correlation coefficient, needed as selection parameter for the calculation, is displayed on the right
hand side of the GUI, as a set of red drawbars (Figure 40, page 69), this enables the coefficient (r) to
be altered as one chooses, in order to use it as a boundary checker for the stream input, by means of

changing the value of the drawbars'*.

eove MATH Manipulator-Correlator-21:37:56-3:2:2016
Manipulator Numerical Output
Index: Select input Output: Select output
1 1 (92.73986 5.1732783 92. 1 Input (stream) Info
2 (35.360257 59.21563 45
3 82 35.360257 92 21 \npmsﬂeamNelussaﬂmpm Statinput range | End nput ange | Corrlaton ype | inspectinput | Bar Color_| Dispaysvreamasnf T |12 a4 s s 7 8 s 1011
i D 051 [052 [00 00 00 00 00 00 00 00 00 00
5 3 59.21563 3 X
6 a 5.1732783 A
7 45349556 1| Tstulrange | 1 100 Pearson > Ispect1 | Red 35:360257 50.21569 1.08
8 5 92.426674 5
9 70.53175
10 6 4.9205446 6
- 7 oot 7 00 00 00 00 00 00 00 00 00 00 00 00
12 92.98991 X
13 8 58.48787 8
14 5.5600424 2|2 2stulrange | 1 100 Nore spectz |Yelow | 92730885.1732789) 0.0
15 9 82.057045 9
16 92.44359
17 10 38.539395 ©
18 4.998171
1 1 00 00 00 00 00 00 00 00 00 00 00 00
19 48.102196 \:‘
20 12 92.99098 12
2 23751008 ala astulrange |1 100 Nore specta | Blue 0 00
2 5.523783
3 21.25936
2 92.875756
& oy 00 00 00 00 00 00 00 00 00 00 00 00
2 5.2637973 D
2 30.532372
2 92.8387
2 7188527 1: None
30 5.23587
31 30.277163

Manipulator action history

112: "DISPLAY-OUTPUT-FROM-CONNECTION: " " size = 742" Give the Manipulator output a name Pearson list length:
113: "Correlation and Zipping the output Lists. Used type of correlation:" :PEARSON >

AD-OUTPUT-FROM-CONNECTION: " "0B)-TD-G21290. 3663520566 sublists = 2" < process-name- G21324 > 10
SPLAY-OUTPUT-FROM-CONNECTION: " " size = 732"
Prepairing the input lists, by zipping the input sequentialy:" #<CACEIV-PACKAGE: :CACE-MATH-MANIPULATOR-GUI "MATH Manipulator-Correlator» Show input only Spearman list length:
37:55-3:2:2016" 2885C098>
+ "READ-OUTPUT-FROM-CONNECTION: " "0B)-10-G21290. 3663520566 sublists = 2" Show 2
+ "DISPLAY-OUTPUT-FROM-CONNECTION:" * size = 732"
: "Correlation and Zipping the output lists. Used type of correlation:" :PEARSON.> Kendall tau list length:
+ "READ-OUTPUT-FROM-CONNECTION: " "0B)-10-G21290. 3663520566 sublists = 2"
+ *DISPLAY-OUTPUT-FROM-CONNECTION: " * size = 662" 4

: "Prepairing the input lists, by zipping the input sequentialy:" #<CACEIV-PACKAGE: :CACE-MATH-MANIPULATOR-GUI "ATH Manipulator-Correlator »
21:37:55-3:2:2016" 2885C098> Data buffer size:

+ "READ-OUTPUT-FROM-CONNECTION: * "0B)-1D-G21290. 3663520566 sublists = 2"

"DISPLAY-OUTPUT-FROM-CONNECTION: " " size = 662" 10000

rrelation and Zipping the output lists. Used type of correlation:" :PEARSON>
AD-OLITPUT-FROM-CONNECTION: * “08]-TD-G21290.3663520566 sublists = 2"
SPLAY-OUTPUT-FROM-CONNECTION: " " size = 662"
epairing the input Lists, by zipping the input sequentialy:" #<CACEIV-PACKAGE: :CACE-MATH-MANIPULATOR-GUT "MATH Manipulator-Correlator » Adding)| Reverse
5-3:2:2016" 2885C09B>
AD-OUTPUT-FROM-CONNECTION: "
148: "DISPLAY-OUTPUT-FROM-CONNECTTON:
149: "Correlation and Zipping the ou

INPUT: select the type of data-input format

Merge < | Merge> | Zipper

-G21290.3663520566 sublists = 2"
size = 602" . .
Tists, Used type of correlation:” :PEARSON.> OUTPUT: Select the type of data-output format and start the correlation calculation.

Adding ~ Reverse Merge< | Merge> | Zipper

Figure 40 CACE4 Correlator GUI.

122 The CACE4 object Correlator makes it possible to make a selection above the value indicated by the coloured
sliders at the right hand side or use data below the correlation value for the analyzed stream.

69

Further to the left, the menu option can be found where <, <=, > or >= can be selected, together with

the three types of correlation'*.

As an example: if r=0.5 is used, the obtained output stream of selected members has a value
correlation coefficient (7) of a minimum of 0.5 up to a maximum of 1.0. But it is also possible to make
a selection the other way around: in that case everything below the minimum limit (< and <=) is
selected, resulting in an output stream consisting of entries less or equal then the selected value. This
will result in an output with a much less strict correlation between the output elements.

The algorithm was designed to work also on specific selections of a single (one-dimensional) data
stream. A start-index and end-index value can be used to create a separate, smaller chunk of the data

stream (In the GUI this is shown as start input range and end input range, see Figure 40, page 69).

The Pearson correlation coefficient (PCC), or product moment correlation coefficient, acts as a
measure for calculating the linear dependency between 2 variables in separated datasets (X and Y) and
was originally proposed by Pearson (1895). This linear dependency is written as r, the correlation

coefficient (see Equation 16). And is a real number between: r &[-1.0,---,1.0].

Ell(xi -)_C)(y, - y)

BN) RN s

number of entries and r is the correlation coefficent.

X = Yi (is the sample mean), n is the
i=1

S | =
S | =

where

Equation 16 Pearson equation formula.

Spearman is a rank order correlation calculation originally proposed by Spearman (1904).

6>d

2 = —_
I’l(l’l - 1) , where di - rg(Xi) I’g(Yi) s rg§ is the difference between the two ranks of each
observation, n is the number of entries (observations) and P (rho) is the correlation coefficent.

p=1-

Equation 17 Spearman equation formula.

Spearman is defined as a special case of the Pearson product moment correlation. It calculates the
correlation of the rank order of the entries in the input, instead of the correlation of the entries

themselves.

12 The initial key-bindings of LispWorks are used in the GUI of CACE4. Therefore changes of the menu
selection need to be confirmed by using the enter key (and not the return key). The issue of key-binding will be
addressed in future versions of CACE4.

70

The third correlation calculation available in the CACE4 Correlator is the Kendall rank correlation

coefficient or Kendall © correlation coefficient.

_ (ncp) = (ndp)
T
E n(n - 1)

NB. ncp = number of concordant pairs, ndp = number of discordant pairs. N is the number of

entries. And T is our correlation coefficient.

Equation 18 The Kendall T formula.

Maurice Kendall originally proposed this rank order correlation calculation in 1938. It is the third
correlation calculation in CACE4 and is also known as Kendall’s tau coefficient. It is a statistical
technique, just as Spearman is for measuring the rank order between two adjacent members of any
given data set. It is therefore also a rank order correlation but based on a tau test: a non-parametric
hypothesis test, specially developed for measuring the dependencies based on the tau coefficient

principles. The Kendall T algorithm works with two lists of concordant and discordant pairs of

numbers. A concordant pair is a number pair of observations, expressed as: {X,,Y;} and {X,.Y,},
with the property: sgn(X, — X,) = sgn(¥, - Y,), where sgn is either negative, zero or positive: -1, 0 or
1. This holds as long both members of the number pair have either a higher, lower or equal value as

the corresponding other number pair.

A discordant pair is also a number pair of observations, expressed as: {X,,Y;} and {X,,Y,}, but now
with the property: sgn(X, — X,) = —sgn(¥, —Y,), where sgn is also either negative, zero or positive:
-1,0 or 1. This must be true for the discordant number pairs {X,,Y,}, which have a higher value of X

as the other corresponding {X,,Y,} number pair, which should also have a higher value of Y.

First sorted according these principles, now entries from both lists are used for calculating the Kendall

T correlation coefficient.

All three correlation algorithms described can be used in this way as a measurement of linear
dependencies or independencies of the dataset, thus, as previously stated, giving a kind of indicator for
the amount of correlation between the points of measurements. The data grouped in sequential
sections as datasets gives an indication of a rank order correlation calculation or as a product moment
correlation calculation.

For all three correlation calculations in the CACE4 Correlator, the output r could act as a gradual
linear dependency controller between two, or more input streams. Used in this specific way, it is
possible to use correlation calculations as a tool for finding (dis-)similarities between two originally

separated input streams (see Figure 41, page 72 for an example of a setup of a CACE4 strategy).

71

Extrapolating the strategy and result of the correlation algorithm onto the musical domain, it could be
used, for example, when writing a composition for several instruments. To be more specific: looking
for similarity or dissimilarity between several instrumental parts provides another way of approaching
the well-known practice of counterpoint. Thus not based on sets of well-described sets of tonal rules,
but on a mathematical base: executed by a correlation calculation. This is based on the idea that if
there is less correlation between two streams: there is also less connection between the two musical

patterns as well.

File Generator-Load Data Text/Doc File-21:34:7-3:2:2016
File Generator-Load Data Text/Doc File-21:34:52-3:2:2016

Informer-21:37:20-3:2:2016

MATH Manipildtor-Correlator-21:37:55-3:2:2016

Informer-Informer-21:38:49-3:2:2016

Translats IIDI Translator-21:39:35-3:2:2016

Figure 41 A CACE4 Strategy setup for using a CACE4 Correlator.

This gives the instruments more independence in their voicing. With this design, it is possible to create
single lines or short motives (defined as a melody and/or as a rhythmic pattern'**), extending from
simple repeated entries resulting in monotonic lines, to, at the other end of the scale, wild and non-

repeated chaotic melody lines'>.

124 Although in all cases of using the CACE4 environment, it is only with the use of the Translator Object that
the stream gets its real musical context in the form of the MIDI protocol: delta start time — key —velocity —
duration, and this context output is fixed by using the send it to the score button. By using the scaling object
earlier in the chain of linked objects however, it is possible to use its output as a scaled version of the calculated
output adapted to the MIDI protocol, without actual translation to the MIDI domain: this still has to be
performed by a Translator Object in the end of the chain of linked objects.

125 Some further experimentation needs to be done in order to find out if there are any other musical possibilities
with the CACE4 Correlator object.

72

5.5.6

The Scaler acts as an all-round linear or logarithmic scaling object.

Scaler.

In the case of Figure 42 (page 73), which acts as an example of scaling the data to the MIDI range, it

can be observed that index 1 is used for linear scaling all elements in the input list according to the

values for Minimum = 62.5'?® and Maximum = 1500.

Manipulator Numerical Output

Index:

MATH Manipulator-Scaler-19:19:2-27:11:2015

Input:

52.0924945355208D
82.1958292454747Dk
55.149560299927941
91.29547759737798(
137.12 31

Output:
272.1224595585718D0
54.9930521778810900
26.874742587518686D2
1320.149945309031200

51.95753571310681¢
104.1728475374999%
72.604854476087291
60.20896778979916(
38.9787260042953D¢
96

1413..
31.20867486597372D2
77.51121834430947D0
888.4831022726124D0
381.06288477167886D0
21.000

61.67160682411185[
47.023755320198641
85.10504729321134(
38.812417152340781
89.334382226011460
122.1597207976216¢
104.2222577328410:
148.9806580008742¢

69.88904, 500
635.97570987215D2
204.9891416245201502
57.28134069245577D0
10.200
1274.857723516445800
1212.574449491901200
72.318265501063D2
123.79350042074704D2

73. 110 906.
103.3883837781356! 960.6229708895558D2
129.4941 92.196:
125.13796907502691 99.16623024362437D2
100.62247 1535. 5604997
115.501 1123.205041
95.82383267024777[65.71235996936764D0
114.7333; 88. 557600

137.40431454062431
130.2337411482800¢
77.121895445729050
44.74369489617012¢
84.33237339841667(

Manipulator action history
lator-Scaler-19:19:2-2 »

7:11:2015"

2439609F>

2385.0505615276343D0
1320.9450658782578D0
51.00207445224949D2

16.12645578471172302
1159.3344825075053D2

< process-name- G21471 >

Show input only

Show

Scaling elements:

Index:

1

2

3

Give the Manipulator output a name

Minimum:

62.5

21

10

62.5

Maximum:

1500

108

127

2500

Output type of scaling:

Linear

Logarithmic

Figure 42 The Scaler object with 4 indexed Minimum and Maximum values.
It creates a new output list with values in range according MIDI protocol for delta-time (in miliseconds), pitch/key
[Piano range = 21-108], velocity [10-127] and duration (also in miliseconds).

This corresponds with the MIDI Clock Ticks setting (with tempo marking MM=120), for 62.5 -> 1/32

note and 1500 -> % note. The ‘hop-size’ for the index is calculated according to the amount of rows of

entered minimum and maximum values used. As an example: the first value will be used to calculate

the (CACE4 Translator object) MIDI delta start-time. This is the inter onset time (as described in

Dessain and Honing 1992, p. 46), in milliseconds (tempo 120) between the start time of the notes.

MIDI (Byte): value 21 = AO (= piano key). The maximum is the highest key in MIDI (Byte) with a

value of: 108 = C8 (= piano key).

The index 3 Minimum entry is the MIDI Velocity range: 10 = approx. pppp - ppppp127. Here it is not

126 Both numbers (Minimum and Maximum) represent milliseconds.
27 Music dynamic notation: they can be perceived as extremely soft dynamic registers. In the case of the forte
signs it is the opposite, as extreme loud dynamic registers.

73

0, but 0 or 1 as a Minimum (MIDI velocity) value can be used as well. The maximum value used is
127 = fffff.

The last index, number 4 is the duration of the note. In this case (see Figure 42, page 73) the Minimum
value 62.5 (in milliseconds, when used tempo 120) stands for a 1/32 note, the same as the first
element: delta-time. The Scaler object acts as a linear-scaler for the input list and works according to

its description in Equation 19 (page 74).

(d()ut max - c()m min)
('xi - ain min)
b -a,)
(in max in min where

a,, ... = minimum of input list.

- max = Maximum of input list.
C,umin = Minimum value range for the output.
C,.mi» = Maximum value range for the output.

Where [a,, . .b
d

Equation 19 Algorithm description of the CACE4 linear scaler.

] represents the range of the original input list.

in max

And [c is the range of the newly calculated output.

out min ***out max]

By adding more minimum and maximum values in the GUI of the CACE4 Scaler object (see Figure
42, page 73), the index is also altered by adding 1. After setting the range accorded to values for every
index member, select linear. This will result in creating new values according to the Minimum and
Maximum values entered'*. In the case of Figure 42: a separate vector of 4 members scaled to the
values entered acts as a pre-MIDI scaling for a CACE4 MIDI Translator object, attached to its output.
Using this CACE4 Scaler object connected between a CACE4 FILE Generator object and a CACE4
ML/MIR object is also good practice. In order to obtain a good spreading before doing any calculus,
with the points read in from a plain text file, the Scaler object is used to scale the new entries to the

appropriate new values inside the minimum and maximum range (x E[min,max]).

5.5.7 Disturber.

The Disturber (see Figure 43, page 75) acts as a randomiser on the elements of the input list. It is
also an algorithm with an adaptable index just like the CACE4 Scaler object. Each member accorded
to the index will be randomly altered by an indicated percentage. With separate percentages for

altering the output randomly, the Disturber is an interesting tool for artistic purposes. Up to fifteen

128 In case the Logarithmic calculation is used: the maximum output value will be exceeded. This is inevitable
with the use of the logarithm as scaling calculation.

74

separate indexed input data streams can be created, all with an independent variable percentage of
randomness.

There is a slight difference in generated output between the use of <Disturbance 1> and the use of
<Disturbance 2>. The first one has a range of [minimum, maximum] and the output is centred round fc
(fc = maximum - minimum / 2). And <Disturbance 2> has a range of [0, maximum], and all output is

above fc, as can be seen in Figure 45 and Figure 46 (page 76).

| [] [] MATH Manipulator-Disturber (x-y Disturbance)-20:42:26-27:11:2015
| Manipulator Numerical Output
Index: Input: Output: Disturbance
1 2.0 1.1334899450034416D-6 Index: Percentage
2 1.0 1.11542658681212900
13 254.0 304.02891920629475D0 1 10.000
|& 1.0 ©.954235994297454100
: 5 1.0 ©.9210521141123184D0 2 20.0D0
16 2.0 1.813510763752016500
17 253.0 238.73076670731507D0 3 30.0D0
i8 2.0 1.4888949548164947D0
lo 0.0 1.4444299330916165D-6 4 40.000
10 3.0 2.599432568825380800
11 2.0 2.426381924796664300 5
112 3.0 3.32087627953128800
: 13 252.0 265.7121015996492600 6
1 3.0 3.325034371153722500
; 15 254.9 203.315666587@34300 7
116 3.0 3.633723131795037D0
117 3.0 2.854468649687299D0
18 40 3.34890145689985200 &
|19 251.0 186.7232669496457D0
|20 4.0 3.7444317965306944D0 9
|21 2.e 2.1400803777616355D2
22 5.0 5.75556949806966D0 10
! 23 4.0 4.81365452131998100
E 24 5.2 6.107543772096106D0 11
125 250.0 274.67154213149627D0
|26 5.0 5.3431493637788226D0 12
27 252.0 308.3824904610462509
|28 5.0 6.588486109353075600 13
129 1.0 ©.914124975907548800
130 6.0 5.9365674603419300 14
131 5.0 3.82752165104250200
; 32 6.0 5.925037653318679D0 15

| Manipulator action history

lator-Disturber (x-y D » Give the Manipulator output a name Data buffer size:
| isturbance)-20:42:26-2 »

| 7:11:2015" 24262FC3> < process-name- G21488 > 10000

| P

| Show input only Output type of disturbance:

i Show Disturbance 1 || Disturbance 2

Figure 43 Display of the Disturber object with 4 indexed percentage values.

abs(n__—n

max min

e = 00,0

) X percentage

, where Jn is the calculated output and Luis the input. Minin sM max

J, =1 + random(Rmnge)

are the observed minimum and maximum value of our input. R is the range used as seed for the random.

Equation 20 Disturber algorithm description.

The next example shows these differences. It uses a Brown fractal as a CACE4 Generator object.

75

Generator Graphics Output

120

Figure 44 The display of the output of the Brown fractal (as a straight line).

The Brown fractal generates 100 numbers (with a value of 100.0) in a straight line, as shown in Figure

44, page 76.

The next two figures show the difference in output of the bandwidth and distribution of the generated
output. The disturbance percentage is for index i1=1.0%, i2=100.0%, i3=1.0% and i4=1.0%, and are in

both cases identical.

Informer Graphical Display Informer Graphical Display

Figure 45 The output of <Disturbance 1>. Figure 46 The output of <Disturbance 2>.
NB Displayed by an Informer object. (see set up: Figure 47).

Figure 45 shows the newly calculated output both up and down the initial value of 100. Here the new
values can now be found in the range [0.0,200.0]. Figure 46, shows the same procedure but now all
entries are in the range: [100.0, 200.0]. The two different approaches result in different output. As an
example of use in a strategy chain in the CACE4 Process window, a setup was created as shown in
Figure 47 (page 77). The setup starts with a Generator object as a first member in the chain of
processing (Keep in mind that one always has to put a Generator object at the first position of the
processor-chain). In this case a Cellular Automaton fractal (Sierpinski sieve) calculation is used,
which acts as the chosen source of data. Other CACE4 Generator objects can be used (Text files and

SPEAR partials text file are the 2 other CACE4 Generator objects).

76

a=?2
i=j-1

k=j+1

R, =mod(Q, + 0,.a)

Equation 21 Sierpinski triangle (also called Sierpinski gasket or sieve) Automaton Algorithm description.

, where a = modulo divisor, j = number of iterations, i and k are index numbers for Q.

After entering the Cellular Automaton fractal (see equation 22), calculation with a = 2, x-maximum =

256 and y-maximum = 50 values, a total of 832 new output list members is generated.

Figure 47 Example of a small strategy setup for the Disturber object in the CACE4 Process window.

Math Generator-Automata-20:39:5-27:11:2015

nformer-Informer-20:43:9-27:11:2015

MATH Manipulator-Disturber (x-y Disturbance)-20:42:26-27:11:2015
Manipulator

Generator Graphics Output

Math Generator-Automata-14:43:48-9:12:2015

©,0) ¢ x-ax 100 300 400 500 600 700 800 900
y-ax BT 1T T 17 IT
100
Index: Output: Generator action history ~Graphics: numerical values Automata Equation (fractal) a[2-100] 2
1 0.0 TPUT:" " size = 832" » xn+1 = 2AXn /(1 + Xn2) - Xn-1
2 1.0 zoom factor: 1.0
3 254.0 8: "CACE4: calculate » Start iterations (y-axis) O xmax [-1000 - 1000] 256
i » Autonata.” #<CACEIV » y position: 100
| ~PACKAGE : : CACE-MATH- § Select type of Automata calculation: = -
5 1.0 GENERATOR-GUI "Math » " yp ymax [-1000 - 1000] 50
6 2.0 Generator-Automata-1 » Y POsition: 100 Automata equation
7 253.0 4:43:48-9:12:2015" 2 » e
2195A93> Sl ol
g - o: "caca: Display: 5[] PXelsize: 1
i o XYGRID-SYSTEM-3-GENE »
10 3.0 RIC)." #<CACEIV-PACK » Numbers generated: O
1 2.0 AGE : :CACE-MATH-GENER »
12 3.0 ATOR-GUL "Math Gener » ~ _ Notes:
- - ator-Autonata-14:43: »
- 48-9:12:2015" 22195A » < notes G21274 >
14 3.0 93
15 254.0 70: "CACE4 defgeneri »
16 3.0 ¢ redisplay-pixmap-c »
) Y allback-GENERIC (ins » S
i i g tance CACEMATH-siev § Select type of background colour for display:
- e-GUI)" #<CACEIV-PAC » None | Colour
19 251.0 KAGE : : CACE-MATH-GENE » &
20 4.0 RATOR-GUI "Math Gene »
2 2.0 rator-Automata-14:43 » o N
8 & t43.9:12:2015" 28116 Select type of grid/axis to display:
- AB7:
23 4.0 e7> Nome X/Yaxis | Grid | Ruler

Figure 48 Display of the GUI of a MATH Generator (Cellular Automaton fractal, n=832).

77

(See Figure 48, page 77). The numerical output is always printed in the blue (scrollable) column (see

Figure 48, bottom left)'*.

,0) a5 100 200 300 400 500 600 700 800 008
o B i 0
o SN U N TN B Y N\ -
S) v v NN
ety B N R NCEK]

o DESUEE SEARA i
e N NS AN NI Y N
At R NTEMAE NCUTL NN t

Figure 49 The Informer object shows the same output as the Generator object except the display has been altered. For
every member a new (x,y) number pair has been created and shown in a (x,y) scatter plot.

For a different type of output plotting, an Informer object is attached to display the data in a (x,y) pair
orientated scatter plot (see Figure 49). Every member of the input list acts as the y value of a newly
created (x,y) pair. The original x value is replaced by x,,, =1i,,,. This results in a different display of
the output and now statistics can be applied to the input list as well.

Next step in line is the Disturber object. According to the entered settings (see Figure 43, page 75),

and after selecting <disturbance 1> new output has been generated. The output of the random process

is stored in the output slot of the object (see Figure 50, page 78).

@0 Hiak 100 200 300 400 500 600 700 800 goog
- e - O A Y
y-ax D R Lan PR .
G SRR IR By I R SR A AR TR
NS AN I AN i Mot TN 2 5 % ey (T Laln T
N R '\‘?‘, ﬂ. .,g\:”hlgl_p,.,.—"ts (ARt A

> SR o A T
i o e

Figure 50 Display of another CACE Informer objects, attached to the Disturber object. It is showing the members as
(x,y) pairs with newly created x-values and the original x-values : as y-values.

If an Informer object is attached to the newly, now disturbed output, and this then is plotted, as seen in
Figure 50, the y value of the plotted pixels in the graph represents their true value. A difference in
disturbance between the upper (y <100.0) and the lower (y >150.0) band of pixels can be noticed

directly'*. This has been achieved by setting the second entries (with a jump size of 4) to 100 %

129 Both types of display of the data obtained by the fractal calculation can give the user an adequate perception
of the data generated.
%0 NB The original disturbance percentage is for index i1=1.0%, i2=100.0%, i3=1.0% and i4=1.0%.

78

disturbance. The first, third and fourth entries are altered with only a 1% setting for disturbance, in the

CACEA4 Disturber object.

5.6 The CACE ML_MIR Manipulator object group.

This Special Group of CACE4 Manipulator objects can be seen as the most important group of

objects of CACE4. It offers other tools, more advanced than those discussed earlier.

5.6.1 k-Means.

k-Means, also called Lloyd’s algorithm, together with the Expectation Maximisation (see section
5.6.2) algorithm, belongs to the group of Hierarchical Clusters. Data is grouped in (x,y) pairs. The
weighting of the input will be done strictly on a numerical basis and is unsupervised. Only the number

of detectable clusters is an editable parameter of the model.

(] (] ML - MIR Manipulator-HCT - k-Means Clustering-16:33:32-30:11:2015

Machine Learning & Music Information Retrieval - Manipulator Graphics Input

©,0) g x-ox

100 © 200 300 400
T 0 R A A A R A R

500 600 700 800 900 1000 1100 1200 1300
y-ad | TIT ITTIT1T17T

-

Machine Learning & Music Information Retrieval - Manipulator Numerical Output

Index: Input: Output: ML_MIR Manipulator action history ~Graphics view values K-Means cluster values:
1 NIL (0 (-30.024 45.164) | | 19: "CACE4 defgeneric redisplay» Select type of K-Means: (x) Cluster colour value:
2 NIL (0 (35.891 -52.835) ~pixmap-callback-GENERIC (insta» = 200M factor: 1.0 yp
3 NIL (@ (169.074 -12.085) | e CACE-MLMIR-manipulator-GUI» K-Means-1 K-Means-2 K1
|, NIL (@ (-68.158 28.339) MﬁfﬁﬁEgézﬁﬁﬁfﬁicﬁiﬁlﬁ: x position: 40 Auto clustering: & on/off
5 NIL (0 (43.295 -27.47) N | ipulator-HCT - k-Means Clusteri» » 2 k2 :orange
6 NIL (0 (24.676 64.784) N :33:32-30:11:2015" 21FASSF» y position: Number of dimensions input [1-2]
7 NIL (@ (-1.833 46.095) N ; k3 [aresR
8 NIL (@ (-7.411 46.684) N :_‘,DESZ:::’I"P”T'fROM’CON"ECT’ Pixel size: 3 2
f i Bt EAD-QUTPUT: PROM. CONNECTIOR Number of Clusters detectable: [1-20] | < -
10 NIL (@ (-17.188 7.676) N | N:" "08)-ID-G21012.3657886269 s» ~ Numbers generated: 0 :
1 NIL (@ (31.475 100.207) 1060" g
size = 530" oy
13 NIL (@ (61.021 21.643) N ISPLAY-INPUT-FROM-CONNECT » <notes G21016 > Number of Clusters as an output: [1-20] | o -pink
1 NIL (@ (68.111 -36.805) " size = 1060" 4
15 NIL @ (126.99 73.262) N EAD-OUTPUT-FROM-CONNECTIO »
16 NIL @ (41.332 28.004) N :" "0BJ-ID-G21012.3657886269 s » Show clust e shift " k7 Ui
ow cluster centre shifting: [on/of

17 NIL ©(13.106 31.134) Select type of grid/axis to display: 2 b o) (BTN
18 NIL © (4251 21.78) NIL | Tiou s o el T D D B
19 NIL (0 (-6.562 29.141) N | 20: "CACE4: calculate k-means: »

Vien-1." #<CACEIV-PACKAGE: :CACE »

Figure 51 k-Means GUI.
The original input displayed in top, yellow background, and the grouped data by k-means in the middle part. Each
group is coloured according the Cluster colour value (right hand side).

When working with a k-means algorithm, visual output, as is shown in Figure 51, page 79 is

79

imperative. Using colour coding for the different categories, after plotting, facilitates their distinction.
k-Means is a Hierarchical Cluster Technique (HCT) and is defined as a method for quantifying
vectors: in this case presented as (x,y) data pairs. k-Means is used for the partitioning of n observations
(in this case n (x,y) data pairs) into a number (k) clusters. k-Means partitions these into more or less
blocks of the same size.

Looking at Figure 51 (page 79), it is immediately observed that just two categories would be
sufficient. Therefore in the second attempt to find the clusters, the number of detectable clusters is
changed to two. The algorithm is based on two steps: first there is an initial assignment phase,
followed by step two, an update phase. Both phases of the algorithm are reflected in the two formulas:
Equation 22 and Equation 23 (both at page 80). The first step (see Equation 22) is done for assigning

every member of the data set S’ to a unique cluster centre. Initially a set of randomly chosen means

(as the centres of the clusters) values: m L. m,, where k is the desired number of clusters to be

detected. In step 2 (see Equation 23) the value is now recalculated as the mean of Euclidian

131

distances” between the members of each cluster (k). This second step is used for calculating new

132

values for the means, which are the centroids °“ of the clusters.

The two steps are an alternating process between assigning (step 1) and updating (step 2), until
m, L. ,m, no longer converges to new values. The cluster centres (means) have reached their final

value and the k-means algorithm stops.

Y

,
(1) PR | S (r) . H e (1)
S ={x, .H.x,, -m, V,.l<j=<k}, where X is assigned to S

. (1)
sH.\p mjl

Equation 22 k-Means algorithm: the assignment step (step 1).

Equation 23 k-Means algorithm: the update step (step 2).

As it is a heuristic algorithm, there is no guarantee that the algorithm will find an optimum and a
solution for this particular (cluster detection) problem. Therefore, trial and error, together with a

CACEA4 Scaler object (at its input), are the tools used in finding a solution for a cluster problem.

The GUI offers the possibility to separate the detected clusters and the (same) clusters saved as an

output stream. The detected clusters will be block aligned and copied to the output stream of the

131 The Euclidian distance between 2 points is defined as the hypotenuse between two points in Euclidian space:

d(p.q) =d(q.p) =~/(q, - p)’ +(q, - p,)* +L +(q, - p,)*.

132 Centroids are the arithmetic mean of our clusters.

80

CACE4 k-means object for further use in the CACE4 strategy chain. k-means, as a Hierarchical
Cluster Technique of processing data, is not well suited for finding clusters of different size, while the
separation of the output clusters are based on equal sized partitions of the clusters. Expectation-
Maximisation (EM, see next section 5.6.2) provides a better solution for this problem. The output of
both (k-means and EM) MIR Manipulator objects are the original data sets (x,y) but newly ordered

according found categories.

56.2 Expectation-Maximisation (EM).

As previously stated, Expectation Maximisation (EM) as a HCT is better suited for separating
overlapping clusters as displayed in Figure 52 (page 81). The algorithm'** of EM is also composed of
two steps and is mostly seen as a generalized version of the previous discussed k-means algorithm.
First the Expectation (see Equation 25: E-step, page 82) has to be found. This is done according to
principles of learning with hidden variables (Russell and Norvig 2012). In addition, EM as a HCT is
an unsupervised process based on probability. In the case of CACEA4, either a Poisson distribution
(button 1 and 2) or a Gauss distribution'** can be used. EM is based on the principles of finding the
maximum likelihood'* (as parameters) in a statistical model.

Figure 52 (page 81), shows clearly the possibilities with an EM cluster detection algorithm. It is

capable of detecting clusters with a considerable amount of overlap; even cluster detection inside other

(0,0) ¢ x-ax 100 200 300
y-ax

)
*-
100

200

300

clusters is possible.

Figure 52 EM: Overlapping cluster detection.

13 CACE4 makes use of coding published by Barry Fishman at: http://compgroups.net/comp.lang lisp/lisp-and-
symbolic-integration/705310.

134 Although implemented, the Gaussian version does not work properly all the time. The second Poisson
distribution version is, for now (May 2016), the same as the first one. In a future version this one will be adopted
to a more specific different approach.

135 The maximum likelihood estimation is defined as a method for finding the estimation by observations of the
parameters of our model.

81

Just like k-means, the fine-tuning of the parameters (three different Poisson distribution variables are
possible), need some attention and will mostly need several runs before the results are satisfactory.
Equation 24 shows how the marginal likelihood is calculated according to observed data and estimated

data.

L(G;X) = p(X | 6) = E p(X,Z I 6) , where L(G;X) = observed data with the Maximum Likelihood Estimate.
And E p(X’Z I 0) is the Maximum Likelihood Estimate (MLE).

Equation 24 The Maximum Likelihood Estimate (MLE).

Equation 25 (page 82) shows the first step or Expectation step (or E step) of the EM algorithm. In the
Expectation step, the expected value of the (log) likelihood function is calculated, and stored with the

observed data set.

060" =E ., [logL(6:X.2)]

(1)
Z|Xﬁ ,where X = observed data, Z = unobserved (missing values) data.

0

= unknown parameters.

Equation 25 Expectation-Maximisation (EM) algorithm, the expectation phase (E step).

In the second phase of the algorithm, the Maximization step (or M step: see Equation 26) is used for

finding the parameter that maximizes the expected value.

6"*) = arg, max Q(G‘B(’)) 0

,where ~ =unknown parameters.

Equation 26 Expectation-Maximisation (EM) algorithm, the maximisation phase (M step).

Although the EM algorithm uses, in its initial state, k-means for an estimation of an initial value for
the cluster centre, it differs from k-means by using two further steps. The expectation or E-step is
needed in order to estimate the newly calculated labels (as there are moving cluster centres, calculated
according Euclidian distance calculating). In the second step or M step, the maximization of this
likelihood (expectation) will be calculated by iteration, in order to find the maximum expectation.
These two steps iterate through a given vector of a certain size. In the case of CACE4, a vector size of
2 - 200 entries is used for executing the separation of the cluster (x,y) number pairs into different sets.
All are centred differently according to the calculation. These are also called the hidden variables

involved in the process. According to Machine Learning (Alpaydin 2010), "In the case of mixtures,

82

the hidden variables are the sources of observations, namely, which observation belongs to which

component." (Alpaydin 2010, p. 150).

Figure 53 page 83, shows the GUI of the algorithm. Colour coding of the detected separated clusters

can be adapted to serve needs. The p1, p2 and p3 variables are used for the value of the Poisson

mixture. Scaling of the input (with linear scaling) is also possible for optimizing results.

eoe ML - MIR HCT - (EM)-12; 17
'

Machine Learning & Music Information Retrieval - Manipulator Graphics Input

e ©.0 x-ax 100 200 300 400 so0 00 700 00 00 1000 1100 1200 1300 1400 1500 1600 1700
y-o BT
100

Machine Learning & Music Information Retrieval - Manipulator Graphics Output

° ©.0 x-ax 100 200 300 00 500 00 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
y-ax T

200

300

Machine Learning & Music Information Retrieval - Manipulator Numerical Output
index Input Output

1 121879 (2 (130.674405199658
2 33.93 (@ (123.915838484625
3 70.892 @ (122.638528353640
4 19.629 @ (113 405766134642
5 55.456. (2 (100.043069785931
6 21.099 (2 (90.1403271650335
7 9.394 (1 (40.1454105464013
8 107.29 (1 (42.3189411856241
9 30.769. (1 (32.8102601816700
10 3146 1 (33.0139353222953
u S7.445 (1 (39.4624187553417
2 46.413 a 6.

3 7.756 a

n 86.622 @,

5 0.937 (1 (79.3778448053109
16 7.192 (0 (36.9185217944385
7 17.982 (0 (30.0463479835423
5 16.021 (@ (33.0531841943113
1 577 (@ (30.3096688596927
20 15.413 NIL

2 35.301 NIL
2z 10265 NI

zo0m factor: 2 Select type of Expectation-Maximization;

poisson-1 | poisson-2 | gauss-3

xposition: 40
v position: 20
Pixel size: 4
Numbers generated: 0

Notes:

<notes G973 >

Select type of background colour for display:

None | Colour

Select type of gridjaxis to display:

None | X/Yaxis Grid

Expectation-Maximization cluster values:
1x)

EM function to find the two means of the
poisson mixtures (p2 & p3) and the mixing
probabilty p1.

Auto clustering: [on/off

Input Vector size [1-20001
40

Number of Clusters detectable: [1-501
3

Number of Clusters as an output: [1-50]
2

Show cluster centre: [on/off

Use input scaling: & on/off

p. values for Poisson mixture.

p1[0.00000001 - 1000.0]
0.001

P2 [0.00000001 - 1000.0]
0.1

p3[0.00000001 - 1000.0]
1.0

delta change factor:
def [0.00000001 - 1.01

0.001

input scaling:
min [0.00000001 - 260.01

1.0
max [0.00000001 - 250.0]
167.0

p. values for Guassian mixture.
max (y) of gaussian curve:
a[-1000.0 - 1000.0]

20.0

median of gaussian curve:
b[-1000.0 - 1000.0]

5.0

width of gaussian curve:
©[-1000.0 - 1000.0]

10.0

input scaling:
min [1.0 - 1000.0]

1.0

width of gaussian curve:
max[1.0 - 1000.0]

1100

Cluster colour value:

K

k2 [orange

sgreen

A delta change factor is available and can be altered by the user. For good results several trials need to

be calculated. Values for a Gaussian mixture can be changed as well. A few specific parameters as

width and median of the Gaussian curve (bell-shape) can be changed with caution.

5.7

Other objects of CACEA4.

There are two more CACE4 Processor objects to mention briefly: The Informer object and the

Translator object. Both have very different functions in the CACE4 program. The task of the Informer

object is to have a data-view possibility in different ways with the aid of statistical tools, without

altering the input data. The Translator object is different. It acts as a translator of pre-MIDI ordered

data. It displays the input stream both as numerical and MIDI values. It alters the input stream (into

pre-MIDI values) when the translated stream is sent to the CACE4 Score object.

83

5.71

Informer object.

The CACE4 Informer object acts as the ‘stethoscope’ of the CACE4 Processor window. It can be

attached, as can be seen at the numerous examples previous showed, to any CACE4 object in the

Processor window. The only exception is the CACE4 Translator object, in this version of CACE4

(December 2015). It has the same set of statistical tools as the STAM (see section: 5.5.2, page 56) and

STAPS (see section 5.5.4, page 64) CACE4 Manipulators objects: minimum - maximum, mean,

median, variance, deviation, correlation, linear-regression and histogram analysis.

| Informer Graphical Display

0,0) ¢4t ix-ax 100

200

1100 12¢

y-ax e

200

Informer Numerical Display

mean-per-2 elements
mean = 165.24077

Index: Input: Output: Informer action history ~ Graphics: view values statistical information display
1 102.182 74.7575 -GENERIC)." #<CACEI » 1 1 = normal
2 47.333 31.35 V-PACKAGE: :CACE-INF » 200m factor: 1.0 normal .
3 15.367 53.966 ORMER-GUL "Informer § min-max

-Informer-16:52:54- » X position: 50 3 =mean
4 92.565 29.487502 11:2015" P B

30:11:2015" 2200F17 » mean A= e
5 -33.59 -2.7275 3> =
6 28.135 30.129002 205: "CACE4 defgene » y position: 30 median 5 = variance
7 32.123 -4.276499 ric redisplay-pixma » 6 = deviation

p-callback-GENERIC » | pivol size: |2 variance) »
8 -40.676 -14.314499 ~ ixel size: 7 = product-moment correlation coefficient (Pearson r

g B (instance CACE-info » Seviation
ia 12‘652 5 1;055 rmer-GUI)" #<CACEIV » Numb o [0 rank order correlation (Spearman rs)
; o -PACKAGE : : CACE-INFO » umbers counted: i .]
correlation -

1u 0.959 7.0769997 RMER-GUI "Informer- » = Inear Regiesd
12 13.195 -9.652 o ezt) otess lin-regression 9 = histogram, max. amount of bins: |14
13 -32.499 7.2304993 S <notes G21083 > histogram
14 46.96 83.0455
15 119.131 51.8965
16 -15.338 -6.4365
17 2.465 47.629998 Select type of grid/axis to display:
18 92.795 28.752999 - N
o B 5. None X/Yaxis | Grid | Ruler

Figure 54 the CACE4 Informer object GUI.

All these statistical processes as discussed previously (see section: 5.5.3, page 58), are available for
analysing the data together with a few graphical tools for altering the display appearances of the
output. By design the Informer object cannot change its input and, due to its task of just showing the
input list in several possible ways, does not produce any output. The only output will be displayed in
its GUI. Figure 54 shows that changing the pixel size, zooming and positioning of the plotting grid and
xy-axis is also possible. The position of the intersection (0, 0) of both the xy-axis and the grid display

can be altered.

84

5.7.2 Translator object.

The CACE4 Translator object was originally designed with three different file formats in mind.
Not only for transforming data to the Score object in a pre-MIDI file format, but also as Music XML
(MXML) or as a file ready for LilyPond translation into a score file (pdf format).

For now the focus has been solely on the creation of SMFs (of type 1).

L] Translator-MIDI Translator-14:69:9-30:5:2016
Translate numerical stream into Musical/Audio events.
Set the initial stream entry order (the sequential input of this TRANS-OBJ) to pre-MIDI order:
1-START-TIME MsEcs |J 2-PrcH ca=60 [3-verocry [J a-purationMmsecs | s>l [s->moi [7>moi [§ s->mo [e->mol [
lem 4-DURATION_MSECS was selected. From menu: 4
Translated sequental input
Numerical display (all sortable columns): pre-MIDI display - (all sortable columns):

Index 1 Start Time (.. 2Pitch 3 Velocty 4 Duration (Ms.. 5PrgChange 6 X Positin 7Y Position 8Z Position 9 Volur Index 1a Start Time (Not.. 1b Quantized (Ms... 2Keys 3 Dynamics 4a Duration (Note-.. | 4b Quantized (Ms... 5 Prg Change
W 883.928571... 42.75 41.04081... 2500.0 o o o o il 12 o 3 P o o
W2 619.897959... 93.5 117.4489.. 2052.29591.. 0 0 o 0 [¥12 s 0 A#[BDE f 1 0 0
[K 1177.29591.. 26.4375 84.02040.. 1355.86734... 0 0 0 0 s 12 [D1 f 1/2 dot o 0
Wa 121.173469. 97.125 12.38775.. 1654.33673. 0) o o s 116 0 c#pb7 pPPP 1/2 dot o)
[Pls 385.204081.. 106.1875 31.48979.. 1753.82653.. 0 0 0 0 s 1/8 dot 0 A#BD7 PP 1 o 0
[Ple 473.214285.. 104.375 48.20408.. 1903.06122.. 0 0 0 0 We 4 0 GHAD7 P 1 o 0
[Pl7 971.938775.. 104.375 79.24489.. 2052.29591. [[o o w7 12 0 GHAb7 f 1 o o
Ns 15000 518125 86.40816.. 1007.65306.. 0 0 o o Ws 1/2 dot 0 3 f 12 o o
[& 209.183673.. 64.5 76.85714.. 460.459183.. 0 0 0 0 Mo 1/16 dot 0 Ea f 174 o 0
Mo 267.857142... 71.75 88.79591.. 261.479591.. o 0 0 o Mo s o cs f 18 o 0
W 1206.63265.. 39.125 14.77551.. 1156.88775.. 0 o o o I_EE} 112 0 D#Eb2 pPPP 112 0 0
W2 414540816.. 626875 43.42857.. 311.224489.. 0 0 o 0 W2 1/8 dot 0 D#EbA P 178 o 0
Wi 942.602040.. 77.1875 29.10204.. 1654.33673.. 0 0 0 0 Ws 12 o F5 pop 1/2 dot o 0
P14 62.5 104375 60.14285.. 2151.78571 o o o o Wi 132 0 GHAb7 mp 1 0 o
[A14 Ra0RIA AR 175 74 4ROAR 1188 ARTTR o n n n [N 1R et o csna i i o n

Translator action history Display sequential Input Elements as transiated Numerical and symbolic MIDI data: | Quantizer settings:

21: "DISPLAY- INPUT-FROM-CONNECTION: * Give the Translator output a name . Traditional Quantizer | Longuet Higgins Quantizer

o Display translation to MIDI
o) f < process-name- G21478 > Quantize MIDI LH Quantize MIDI

Save all Matrix data, to a textfile MIDI settings: quantum = [1.0 | | Tolerance= [0.15

Save as Textfile. Tempo qnote MM = | 120
. § § Speed= 0.5

Send all Matrix data, to the Project Score object. | o Sionarure = 4/a
Send to Score...

Data buffer size: Use Start-time as absolute time, or use it as delta start time

10000 (inter-onset): NB. In both cases: time will not be altered:

Use Start-time _ as Absolute Time.

Figure 55 The CACE4 Translator GUI.

At the top of Figure 55 four selected MIDI parameters can be seen. Selectable from a drop down
menu, they represent not only the MIDI value as keys, velocity, delta start time'*® and duration, but
they are also used to split the input list into several (4) streams. Selecting another menu-entry from the
drop down menu can alter the order in which the stream will be selected. If an already selected menu
item is used, the previous one will automatically flip to neutral (0), and has to be given a new value in
order to function properly'”’. This linking of the separated input-streams to a pre-MIDI format is
necessary so that the CACE4 Score object will know which numbers will need a specific MIDI format
in order to be able to write the stream to a SMF if requested'*®. Therefore the Translator object should
always be the last CACE4 object in a chain of other CACE4 objects.

The tempo and time signature can be altered: values entered will be used to write to the SMF (header)

done in the CACE4 Score object. If no changes are applied, the initial values shown in Figure 55 will

13 Dessain and Honing in: The Quantization Problem: traditional and Connectionist Approaches, are referring
to inter onset time as the delta start-time and it is just like the duration expressed in milliseconds (The contrary is
expressed in offset time: a delta time adder). (Minsky et al. 1992, p. 449)

137 And thus mimicking a kind of matrix in its functionality; every dimension of the input-stream can be attached
to a specific pre-midi parameter.

138 Together with the CACE4 Generator Objects the Translator Objects are the begin object and end object of a
Strategy in a CACE4 Processor Object.

85

be used (tempo quarter note is 120 MM and time-signature is common time: 4/4).

Two more views, besides the ‘neutral’ (button: <Display translation to MIDI>) view, are available, as
the input values can also be quantized in two different ways: by using the Micro Traditional Quantizer
or the Longuet Higgens Quantizer'”. Figure 56 (page 86), shows the same input after the Micro

Traditional Quantizer has been applied (button: <Quantize MIDI>).

Numerical display (all sortable columns): pre-MIDI display - (all sortable columns):
Index ex

2Pitch 3Velocity 4 Duration (Ms.. 5PrgChange 6XPosition 7Y Position 3Z Position 9 Volur Index 1a Start Time (Not.. 15 Quantized (Ms. 2Keys 3 Dynamics 4a Duration (Note-.. 4b Quantized (Ms... 5 Prg Change

1 889 a3 @ 2486 o 0 o o W1 12 o G2 P 1 o o
[¥12 623 94 17 2041 o o o o w2 74 0O A#BbE it 1 o o
s 1184 26 84 1348 0 0 o 0 s 12 0 D1 f 1/2 dot o 0
Wa 122 97 12 1645 o 0 o 0 W e 0 c#Db7 PpPP 1/2 dot o o
[Fls 387 106 31 1744 o 0 o 0 s 1/8 dot 0 A#Eb7 pp 1/2 dot o o
[Fle 475 104 a8 1892 0 0 o 0 e 174 0 GHAb7 » 1 o 0
Pl7 976 104 79 2041 o 0 o o w7 12 0 GHAb7 t 1 o o
s 1507 52 86 1002 o 0 o o s 1/2 dot 0 3 f 12 o o
o 210 6 77 458 0 0 o 0 e 1/16 dot 0 Ea f 174 o 0
W10 269 72 89 260 o 0 o 0 W10 e o cs t e o o
W 1214 39 15 1149 o 0 o o i3] 12 0 D#Eb2 pPPR 12 o o
W12 417 63 a3 309 0 0 o 0 12 1/8 dot 0 DHEba » 18 o 0
[LE] 948 77 29 1643 o 0 o 0 " KE] 12 o Fs PP 1/2 dot o o
[Fl1a 63 108 60 2137 o 0 o o s 132 0 GHAb7 mp 1 o o
[I 218 an 72 1110 o n o n s 1R ot LAY mt 1 o n

Figure 56 Output from the Micro Traditional Quantization.

This quantization algorithm has two parameters for alteration: the quantum and speed [0.1 — 1.0] can
both be used. It uses this Inter-onset quantization as explained by Dessain and Honing: ““ This simple
method rounds the inter-onset intervals of the notes to the nearest note duration on a scale containing
all multiples of a smallest duration (time-grid unit or quantum)*“ (Minsky et al. 1992, p. 450).

Therefore this quantization approach can be seen as a rounding off process, and is therefore sensitive

to rounding off errors.

Figure 57 (page 86), shows the output after a quantization according the simplified version'*" of the
Longuet Higgens Quantizer by Dessain and Honing (Minsky et al. 1992, p. 455), has been used
(button: <LH Quantize MIDI>).

Numerical display (all sortable columns): pre-MIDI display - (all sortable columns):

Index 1 Start Time (. 2Pitch 3Velocity 4 Duration (Ms... 5PrgChange 6X Position 7Y Position 8ZPosition 9 Volur Index 12 Start Time (Not... 1b Quantized (Ms. 2Keys 3Dynamics 4aDuration (Note-.. 4b Quantized (Ms... 5 Prg Change
| & 599 43 a 2221 [[[o m 14 o G2 P 1 o [}
¥12 420 94 17 1823 0 0 o o w2 1/8 dot 0 A#BDb6 fift 1 o o
s 798 26 84 1205 0 0 o o s 1/4 dot o D1 t 112 o o
W 82 97 12 1470 o o o o W 1/32 dot 0 C#Db7 ppPP 1/2 dot o o
[Pls 261 108 31 1558 0 0 o o Ws 18 0 A#Bb7 PP 1/2 dot o o
[Ple 321 104 a8 1691 0 0 o o We 1/8 dot 0 GHAbT p 1/2 dot o o
[Pl7 659 104 79 1823 0 o o o w7 1/4 dot 0 GHAbT f 1 o o
Ws 1017 52 86 895 0 0 o o Ws 172 o E3 t 112 o o
Mo 142 64 77 409 0 0 o o Mo 118 o E4 t 1/8 dot o o
Mo 182 72 89 232 0 o o o Mo /16 dot o cs 1 18 o o
W1 818 39 15 1028 0 0 o o [1/4 dot 0 D#ED2 pPPP 112 o o
W2 281 63 43 276 0 0 o o M2 118 0 D#fEDA P 18 o o
Wis 639 77 29 1470 0 o o o W 1/4 dot o F5 PP 1/2 dot o o
[Pl1a a2 104 60 1912 0 0 o o M 1/64 dot 0 GHAbT mp 1 o o
[I8 2a1 ar 71 128 o o o o s 1R 0 a#iaha mt 1 n n

Figure 57 Output from the Longuet Higgens Quantization.

1% The implementation in CACE4 of both models makes use of Common Lisp source code published in:
Understanding Music With Al, Chapter 19, by Dessain and Honing (Minsky et al. 1992), The traditional
Algorithm, a Micro Traditional Quantizer by Dessain and Honing: (Minsky et al. 1992, p. 454) and a ‘stripped’
version of the Longuet Higgins Algorithm by Dessain: (Minsky et al. 1992, p. 455).

1 Simplified means: no tempo tracking, no metrical structure tracking, and no articulation analysis takes place.
Only beat tracking takes place (Minsky et al. 1992, p. 455).

86

Although this version is a ‘stripped down’ version from the original one, it is much more complex, in
its behaviour and coding as the Micro Traditional Quantizer.

Both quantization algorithms have specific approaches but also their strong limitations. Therefore
Dessain and Honing have proposed a third model: the Micro Connectionist model'*' (Minsky et al.
1992, p. 459).

After all processing has been done, the user presses the button: <Send to Score...> to send the

transformed output to the Score object or use <Save as Textfile...>, for saving the output in a text file

142
format *°, which can be used for viewing the output as a text based reference (see Figure 58).

time:11:59:37 date:31:5:2016 block-size:4 math-index:800 notes:200

Index -STime -Pitch -Veloc -Durat -Timbre -Xpos -Ypos -Zpos -Volume
1 62.5 44.082 80.000 446.4 NIL NIL NIL NIL NIL
2 64.7 38.755 80.236 223.2 NIL NIL NIL NIL NIL
3 66.9 86.694 80.472 169.6 NIL NIL NIL NIL NIL
4 69.1 31.653 80.709 330.4 NIL NIL NIL NIL NIL
5 71.3 77.816 80.945 80.4 NIL NIL NIL NIL NIL
6 73.5 63.612 81.181 71.4 NIL NIL NIL NIL NIL
7 75.7 40.531 81.417 241.1 NIL NIL NIL NIL NIL
8 77.9 108.000 81.653 71.4 NIL NIL NIL NIL NIL
9 80.1 65.388 81.889 169.6 NIL NIL NIL NIL NIL
10 82.3 60.061 82.126 169.6 NIL NIL NIL NIL NIL
11 84.5 90.245 82.362 98.2 NIL NIL NIL NIL NIL
12 86.7 47.633 82.598 401.8 NIL NIL NIL NIL NIL
13 88.9 95.571 82.834 303.6 NIL NIL NIL NIL NIL
14 91.1 42.306 83.070 482.1 NIL NIL NIL NIL NIL
15 93.3 67.163 83.307 62.5 NIL NIL NIL NIL NIL
16 95.5 29.878 83.543 464.3 NIL NIL NIL NIL NIL
17 97.7 22.776 83.779 169.6 NIL NIL NIL NIL NIL
18 99.9 86.694 84.015 116.1 NIL NIL NIL NIL NIL
19 102.1 24.551 84.251 312.5 NIL NIL NIL NIL NIL
20 104.3 86.694 84.487 321.4 NIL NIL NIL NIL NIL

Figure 58 The output of the Translator object as a text file.

All three different output formats: as raw MIDI data and twice as quantized data, can be written to a

text file.

573 The CACE4 Score object.

The CACE4 Score object is literally the last object in the line of a CACE4 strategy. It acts as a
collector of all basic (pre-) MIDI Music-blocks, generated by a (MIDI-) Translator object. The
original design idea was to create an object with a track display, as often used by commercially

available sequencer/editor Audio/MIDI programs'®.

14! This connectionist model brings context into the quantization algorithm. It is not yet available (December
2015), but will be implemented into a future version of CACE4 as a third quantization option.

2 As a .txt or .doc file.

143 For example, Nuendo (Steinberg), GarageBand (by Apple), Digital Performer (by Marc of the Unicorn:
MOTU) and Logic Pro X (by Apple) are just a few examples of these commercially available Audio and MIDI
Sequencer applications.

87

ece Project Score-11:57:3-31:5:2016
Score files Printing Help
=Ed & r?

Select a Music Block and place it on one of the tracks.

nnnnnn

RSN SRR RRSRAIL
_m‘%fu,_ewu_am\umu I T T TIT
R T
N S
e NI IR AN

>HI\\IIHIIHIHH\\H\HI\H\IHHIHHHH\II\\HHI\IIIHIIHIIHHIH

Fr il |
=

Select an action for the Score of the Project.

Figure 59 A CACE4 Score object.

In this version of CACE4 (December 2015), the Score object is a very simple object'**. Its only
purpose is to translate a pre-MIDI block (see Figure 59) put by the user on the first track, into a SMF.
The idea behind this Score object was to create a workspace for placing the Music-blocks in a

145,

(random) sequential order, and for future use

Tracks.

: to be able to consolidate them into a single or multiple

By selecting button <Save as a STD MIDI file>, the user saves the output of this (a single music-
block) to a SMF of format 1. The previously ordered pre-MIDI stream will now be typecast to a byte-
stream and saved to a file (including writing a header with all — according to SMF format — necessary
track-, including track headers, and all other file information). When the user uses the <Send to Score>
button in the CACE4 Translator object, the pre-MIDI data will appear as a Music-block in the top
corner of the Score object Window. The Music-blocks show some additional information as can be
seen in Figure 59. A gray-scale colour provides information about density (equals spreading of the
total amount of notes over the time of the Music-block). The darker the gray colour appears, the
denser the Music-block will be. The lower part of a Music-block displays a band of colour. It
represents a scale (from green to red) of the mean velocity of all entries (in the Music-block). The

redder the colour appears the higher the velocity values will be.

14 Due to time constraints this object acts now only as a (visual) storing place for the MIDI data before
transforming them into a SMF. Future development will focus on this object to give it more features for handling
these MIDI-blocks.

145 This will include a second file format: SMF format 2, will multiple Tracks and separated Tempo Tracks.

88

Extra text, at the left of every Music-block, gives information about Track-number, unique ID —
number, Tempo, Time-signature, Start-time, End-time, Duration, the mean Velocity calculated of all
entries and the number of Notes of this block. For now (December 2015) they have no other function

besides displaying this information'*®, and are all omitted for creating a SMF.

Although the functionality of the Score object is comparable to a Sequencer program, this is not its
main objective. All functionality provided by an off the shelf, commercially available Sequencer
program, is unavailable in this version of CACE4. This was also not the original intension: CACE4
should act as an intermediary processor between data files as input and, for now, MIDI files as output.

In this way it is possible to use it in a Sequencer or a Notation Program, for extra editing.

Future development will focus on monitoring the output generated by listening an easy ‘glueing’
functions for consolidating Tracks and implementing a real Multi-track version with a SMF format 2

as output.

58 Building a strategy with CACE4 objects.

Setting up a strategy for reaching a certain predefined goal is the core application of CACE4. It
really depends on the results one is looking for and of the complexity of the problem itself, what the
calculated outcome of the process is. Taking time to experiment with the order of the objects in the
Process-window and scaling it to the right proportions can help as well. In addition, deleting certain
items in the data stream, (e.g. x=x+1 values) can clean up the results. The results will differ also if one
experiments when entering parameter values from the Generator objects. Displaying and plotting the
results, doing some (only visual output) statistics with the Informer object will help in understanding
the results. It must be remembered that not all the Information Retrieval (k-means and EM) or A L.
(ART?2) objects can solve the problems, because they are not well suited to the specific data
problem'?’. So it is best to initially devise small experimental setups and streamline the strategy

process according to the results obtained.

58.1 About the Art of designing a CACE4 strategy.

This paragraph illustrates a typical working session with the CACE4 program. After initial ideas

and considerations about the kind of composition one would like to work on (e.g. instrumentation,

146 A future version should not only be capable of using the SMF format 2 (= Multiple Tracks format), but also
provide the user with an adequate listening possibility of the tracks before creating a SMF.

147 K-means is used for more widely spaced cluster detection. The EM algorithm can be used in case the clusters
are more narrowly spaced. An ART2 NN uses vectors for qualifying however and is as such, not directly used
for detecting clusters but for grouping vectors (with a scalable size) into distinct categories.

&9

duration, and other compositional ideas'**), a new project window is created in the CACE4
application. After adding a CACE4 Processor object, and opening it, objects are selected and arranged
in order to be used in the chosen process. See Figure 60, page 90 as an example of a lay-out and

connections of objects.

File Generator-Load Data Text/Doc File-16:31:9-30:11:2015

AI Mantpulator-ART2 (neural network)-16:34:39-30:11:2015

Al
—

\

Informer-Informer-16:52:

DATA Manipu L

n
anipUlator-ses
" Data ecmer-Informer-16:39:53-30:11:2015

Figure 60 Example of a working session with several CACE4 objects in the Processor window.

The first object in the process-chain should be a Generator object. Therefore a CACE4 FILE
Generator object of a text file type is selected and a choice is made (by using a dialog window) for the

desired file with data. In this case the data is grouped in (X,y) pairs: ready for scatter plotting.

Figure 60 shows two Manipulator objects attached for transforming the data, in this case: a k-means
object and an ART?2 object. Both are attached to the CACE4 FILE Generator object. The ART2 object
is used in a second strategy-chain. The CACE4 objects are not connected and therefore the outputs are
not interfering'* with each other and generate two separated (pre-) MIDI streams of the split processes
involved. All four green informer objects are used in order to have a visual/statistical check of the

output if necessary and will have no direct influence in the final output.

48 The list of compositional ideas can be rather long and depends on how the user likes to achieve their
compositional goal. In this example the goal was to achieve a strategy capable of comparing the output generated
by the two separated streams. (In this case a k-means cluster Object versus an ART2 Neural Network Object)

49 If one likes to intermingle or add the results, a Merger Object must be used and the two streams connected
somewhere before a Translator Object.

90

Next the Pruner object (see Figure 60) is used in both strategy processes. It takes care to remove

unnecessary or unwanted numbers in our stream. In this case only the first cluster of k-means (n=50)

and 1 large output category of the ART2 object (n=700) are used (see Appendix 1.1 and 1.2).

The last object used in the Strategy chain is the Scaler object, this being necessary before the

Translator objects can be used (see Figure 61, page 91). It should always be in the chain were MIDI

output is desired, in order to be able to scale the output to the range of MIDI (Note numbers and

Velocity) values. In this case the following (MIDI) ranges are used: 32.5 — 1500, 21 -108, 10 -127,

32.5 - 1500 1/64™ note. For scaling timing it is necessary to scale in order to create MIDI time scaled

values (Delta-start-time and duration, both in milliseconds). Values are typically somewhere between

32.5 milliseconds (= 1/64 th note) for a minimum and 1500 as a maximum. For entering duration

values, comparable ranges can be used. After entering the desired data ranges, press <linear> for

scaling.

Appendix 1.1 and 1.2 shows a typical working session involving several open windows for displaying

and altering the data stream. By using the Informer objects and ‘connecting’ them at different object

outputs in the chain of strategy, the intermittent and final result can be looked at in different ways.

The final CACE4 object in the process chain is always a Translator object; in this case MIDI

translation is used.

Translate numerical stream into Musical/Audio events.
Set the initial stream entry order (the sequential input of this TRANS-OBJ) to pre-MIDI order:
1-START-TIME MsECS [2-PITCH.C4=60 [3-vELOCITY
tom :4-DURATION_MSECS was selocted. From menu: 4

Translated sequental input

Numerical display (all sortable columns):

Index 1 Start Time (.
1 29357178
2 749.17115
3 692.9817
4 165.34925
5 1500.0
6 402.2726
7 625
8 647.2206
9 737.846
10 309.04767
1 626.0248
12 868.05787
13 464.3943
14 754.8125
15 43059457
16 758.38154
17 43274567
18 1052575
19 37135114
20 522.0138
21 666.2231
22 1082.7024
23 950.1819
24 73310144
25 845.25617
26 606.64637
27 888.2178

Translator action history

139: “DISPLAY-INPUT-FROM-CONNECTION: " *
o

2Ppiteh
62.212037
67.03459
28.657559
73.66038
48.140038
55.719636
47.747673
58.039265
7757323
65.00675
44.628678
68.54136
35.200295
85.40269
52.901154
54.57856
27.368355
67.82846
62.508488
68.800328
§1.47327
72.20801
68.99477
67.99246
95.5066
80.80017
55.00124

140: TION: "

3 Velocity 4 Duration (Ms.

38.56725
92.20992
32.472027
94.10887
84.826256
79.57801
34.689133
103.35781
36.679085
81.96494
84.66861
79.21471
66.77626
73.47918
84.996086
81.10719
50.85309
50.725633
81.95706
84.60412
32.21549
99.43953
58.850865
69.876206
73.70132
65.19333
42.60163

2 - 700"

41: “Show data in numerical (MIDL
015" 202210¢7>

3 4
> format." #<CACEIV-PACKAGE

CACE

1910.8762
1473.5084
1320.1185
692.09266
1359.3909

803.9861
1406.3491

719.2741
1876.3193
289.89786
1494.2965
1030.9026
1595.0307
12296265
1723.1289
1331.4292

1443.708
978.79285
1187.0491
133.95363
1739.3436
1358.6782

1506.679

584.4645
1431.9612
1022.2369
1226.3142

‘Translator-MIDI Translator-16:50:0-30:11:2015

4-DURATION.MSECS | 5 -> MIDI 6->Mmol [J 7->MmoI 8->mol g

pre-MIDI display - (all sortable columns):
Index1a Start Time (Not.

5PrgChange 6 X Position 7 Y Position

©0000000000000000000000000O

©00000000000000000000000000

©00000000000000000000000000
B

- 700"
TRANSLATOR-GUI "Translator-MIDI Translator-16:50:0-30:11:2 &

18
114 dot
174 dot
1116
1/2 dot
1/8 dot
1132
1/4 dot
1/4 dot
18
174 dot
174 dot
114
114 dot
1/8 dot
174 dot
1/8 dot
12
1/8 dot
74
1/4 dot
12
12
174 dot
1/4 dot
174
12

1b Quantized (M

Give the Translator output a name.

< process-name- G21077 >

Save all Matrix data, to a textfile

Save as Textfile...

Send all Matrix data, to the Project Score object.

Send to Score.
Data buffer size:

10000

©00000000000000000000000000

9->MIDI
2Keys 3 Dynamics 4 Duration (Note-.. 4b Quantized (Ms... 5 Prg Change
D4 o 1 0
Ga ff 1/2 dot o
F1 PP 1/2 dot 0
D5 it 1/4 dot 0
c3 f 1/2 dot o
Git/Ab 3 f 1/4 dot o
c3 Pp 1/2 dot 0
AH[BD 3 ff 1/4 dot 0
F#/Gb 5 P 1 o
Fa f 18 0
A2 f 1/2 dot 0
A4 f 12 0
B1 mf 1/2 dot 0
CH/Db & mf 12 0
F3 f 1/2 dot 0
63 f 1/2 dot 0
DH[ED 1 mp 1/2 dot o
Git/Ab 4 mp 12 0
D#[ED 4 t 112 0
B3 f 116 0
DH/ED 3 P 1/2 dot 0
cs ff 1/2 dot 0
A4 mp 1/2 dot 0
GH/Ab 4 mt 174 0
c7 mf /2 dot o
AS mf 12 0
63 o 112 0

Display sequential input Elements as translated Numerical and symbolic MIDI data:

Display translation to MIDI
MIDI settings:

TempoQNMM = 120

Time Signature = 4/4

Use Start-time as absolute time, or use it as delta start time

(inter-onset): NB. In both cases: time wil not be altered:
Use Start-time as Absolute Time.

©00000000000000000000000000

6 Tempo 7 Time Signature.

120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120

Quantizer settings:

(44
(a2
(a2
(a4
@)
@)
(a2
(a4
@)
@)
(a2
(44
@)
a2
(a2
(a4
@)
(a2
(a2
(a4
@)
(@)
(a2
(a4
(@)
(a2
(44

Midi Status Byte

note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note
note

Traditional Quantizer | Longuet Higgins Quantizer

Quantize MIDI

Quantum= 1.0

Speed= 0.5

LH Quantize MIDI

Tolerance =

0.15

Figure 61 Shows the view of the Translator object with the first 27 entries of the translated (to pre-MIDI) output.

After selecting the appropriate properties: delta start time, key, velocity and duration (all of these

items can be found in the top of the Translator window as pull down menus), the values now have to

be matched to the according index numbers. The first element in the input list will be used as delta

91

start time in milliseconds. The second one will be used as a MIDI key value. The third one is used as a

value for MIDI Velocity. The fourth and last one is the Duration in milliseconds.

By attaching a Translator object to the end of this process chain, everything can be translated to the

Score object where the final results can be saved as a SMF. When saved in this file format it can be

used in most other Music Editor Software (e.g. Sequencers) for further use/editing.

e —— T #e !
Track 1 Z I = — = £ I z
S e | —
-3
—
T
: — .
‘ = #
3 ra —
st O
e S o o) | sy
— e ———ve
K e e o e —
—ha N e e g
I bo—e e =
T
Y bz —
T S ; S —t
T ! t
3 : ‘
Reey ;I’F' r
Rt T
T e e e —N—
f T a)
= o ! fa—
= =
o) —|
): P — — r—= = -
=L — I ==t 2 == 1
= ST 7 4
13
e | —3— —3—
o= G .
t ~— : p— P — — =
I ! T ; St — -
% —— — = T {
= o = b1 - — =
13
Q= . .
) s] = — e — m—
7 — ! — = — f S e
f b - =, a0 —F——T
T —— L& I [T é
e

Figure 62 Screen shot of Finale™ display of the SMF generated in CACE4.
This is the output of the ART2 NN object. See Figure 61 for its CACE4 Translator object display. No additional

editing has been done.

Translate numerical stream into Musical/Audio events.
Set the initial stream entry order (the sequential input of this TRANS-OBJ) to pre-MIDI order:
1-START-TIME_LMSECS v 2-PITCHC4=60 v 3-VELOCITY v
ltem :4-DURATION_MSECS was selected. From menu: 4
Translated sequental input

4-DURATION_MSECS v

5->MDI v 6->MDI v

Numerical display (all sortable columns):

pre-MIDI display - (all sortable columns):

Index 1 Start Time (. 2Pitch 3 Velocity 4 Duration (Ms... 5Pr¢ Index 1a Start Time (Not.. b Quantized (Ms...
1695.4701 67.258026 81.2178 4354.669 I § 1/2 dot [}
625 6539527 87.48042 421.43042 2 132 o
611.3897 63.89298 75832756 2011.6879 | K] 114 o
7562177 67.22183 1200 1169.4014 e 132 [
496.14417 71.66913 62.284916 1259.3479 1a o
520.92884 69.78843 63.32395 4673.7476 14 o
1959.6016 61.187046 72.23013 5000.0 1 o
8745349 66.704575 69.05024 1848.7684 Ms 1/4 dot o
381.6323 71.90588 7270443 3000.2742 Mo 1/8 dot o
444.45084 67.1379 84.69707 3534.581 Mo 1/4 o
987.21857 60.0 500 2458.7346 W 1/2 o
2500.0 61.492783 88.88872 62.5 W2 1 o

7 ->MiDI 8-> MIDI
Jkeys 3 Dynamics
Ga f
Fa f
E4 mf
Ga it
cs mp
A#/Bb 4 mp
C#/Db 4 mf
G4 mf
cs mf
Ga f
ca P
c#/Db4a f

v 9->MDI

4a Duration (Note-...

1/8 dot
1

112
1/2 dot

4b Quantized (Ms..

cococooooooooo0

5 Prg Change

cococoocococooo0o00

6 Tempo
120
120
120
120
120
120
120
120
120
120
120
120

7 Time Signature

Midi Status Byte

note
(44) note
(a4 note
(a4 note
(a4 note
(a4 note
44 note
44 note
44) note
(44) note
(44) note
(a4 note

Translator action history
657887908 size - 50
 181: "Show data in numerical (MIDI.

) format."

" #<CACEIV-PACKAGE: :CACE-TRANSLATOR-GUL “Trans »
2217867F>

ize = 50"

621096.3657887908 size - 50"

" #<CACEIV-PACKAGE : :CACE~TRANSLATOR-GUI "Trans »
8E10C168>

:6-

221:

"selected” "Send to Score..."

Give the Translator output a name
< process-name- G21101 >
Save all Matrix data, to a textfile
Save as Textfle...
Send all Matrix data, to the Project Score object.
Send to Score...
Data buffer size:

10000

Display sequential input Elements s translated Numerical and symbolic MIDI data:

Display translation to MIDI

MIDI settings:

Tempo QN MM =

120

Time Signature = 4/4

Use Start-time as absolute time, or use it as delta start time
(inter-onset): NB. In both cases: time will not be altered:

Use Start-time.

as Absolute Time.

Quantizer settings:

Traditional Quantizer | Longuet Higgins Quantizer

Quantize MIDI
Quantum= 1.0

Speed= 0.5

LH Quantize MIDI

Tolerance = |0.15

Figure 63 Shows the view of the Translator object with only 12 entries used for translation to pre-MIDI data.

92

The output displayed in Figure 62 (page 92) and Figure 64 (page 93), is a view of the same output but
now in the Finale™ application. Only quantization 1/32 notes have been applied when the generated
SMF was first opened and read. This is the same quantization as has been applied in the Scaler object
as the smallest possible delta start-time and duration: 62.5 milliseconds (with a MM=120 tempo and

4/4 time signature, see both Appendix 1.3 and 1.4.

Figure 64 Screen shot of Finale™ display of the SMF generated in CACE4.
This is the output of the k-means object output. See Figure 63 for its CACE4 Translator object display. No additional
editing has been done.

58.2 How does CACE4 compare with other computer composition

environments?

In order to make a valid comparison between CACE4 and other Computer Composition Programs
it is necessary to find shared criteria rooted at a higher or so called meta-level.
These higher-level abstractions are necessary for finding shared definitions and matching ways of
processing of the data '*°. Certain program design issues must be taken into account as well. For
example: is the computer composition environment command line based, or is it an application with,
to a certain extent a GUI for interaction by a user? Also the major software design choice: is it based
on a Language Model, or does it use another approach as Model? In order to be able to make any kind

of comparison possible the list of criteria needs to be reduced to a few essential points:

- Usability, a very subjective one: command line provides more flexibility then a GUI, but this comes
with a cost as the user needs more time to become acquainted with all the possibilities offered.

- Extendability: on which level (for example, the programmer or the user) is the program extendable?
- How is the GUI defined? Does this involve the use of graphics, terminal or the use of both?

- Core foundation: is it based on Music as a language'' or as a ‘neutral’ data stream? Or is there

150 Otherwise too many details have to be taken into consideration and comparisons made far beyond the scope
of this thesis.

31 Although defining Music as a Language has its advantages, it also put a restriction on certain details of the
program. If it is not defined (inside the music language involved) it cannot be observed or otherwise used for
doing (music) calculus. These restrictions can be easily avoided if there is a possibility in the application
involved for doing mathematical calculus. It is still outside the domain of music as a language, but for now it is
knowable and therefore can be used.

93

another Model used in the design of the application?

The following algorithmic composition programs place differing emphasis on these criteria.

AthenaCL'? is an open design for computer-aided algorithmic music composition (Ariza 2005). This
music composition program by Christopher Ariza is command-line based, although certain parameters

can be displayed in separate graphical displays windows (as Event-sequences).

The athenaCL Sytem offers an open-source set of objects written in python. It is command-line based
and therefore is scriptable and can be embedded into other platforms. It comes with advanced
Libraries for all sorts of Musical Modelling E.g. Microtonal tools are amongst them. The musical
material obtained can be outputted in several formats: CSound, SuperCollider, Pure Data, MIDI, audio
files, XML and text formats. The program is easily extendible, also on the level of the user. Working
with a command line'”* offers greater ease in letting the user work with pre-defined template
documents. This speeds up the process significantly. The use of a GUI is rather restricted to a few
‘output’ objects for plotting purposes.

As a software design principle, music is treated as a language and therefore restricts itself to pattern
creation. Music can therefore only be defined on the level of different kinds of patterns, all related to

each other in a hierarchical relationship.

ACToolbox "™ is defined by Paul Berg as a collection of (software) tools for doing algorithmic
composition. It is based on the idea of defining all processes as objects. This offers the advantage that

155

every process can be treated independently from each other > thus offering the user ease of

extendibility and flexibility in the process of defining new objects (and their processes).

Generators here, as also in CACE4, are doing the job of creating musical material. Transformer'*®
objects then take over in order to transform the generated input. Input and output can also be used
from several file formats available: MIDI, OSC, FOMUS, CSound and even output for use with the
Kyma Capybara can be obtained. The integration of a LISP interpreter (from LispWorks, version
6.1.0) and therefore being able to use a Listener, offers tremendous flexibility. Users can create their
own objects on source code level. This is the maximum flexibility any program can provide and
therefore has no restrictions on extendibility. It comes with a small cost, as users need a little time to

get acquainted with the software. Good examples do exist, however.

132 AthenaCl can be found at: https:/pypi.python.org/pypi/athenaCL/2.0.0al5

133 From the perspective of the user: there is great flexibility in using this command line, although a certain
‘learning-curve’ has to be taken into account.

'3 The ACToolBox application can be downloaded from URL: http://www .actoolbox.net/download/

155 This is comparable the way CACE4 was designed.

1% This is different from CACE4: Transformer Objects are equivalent with the functionality of the Manipulator
Objects, although Manipulator Objects do not always transform the input. Mostly the original input is sorted
according a certain process without altering the original input values (e.g k-means, EM, ART2 etc.)

94

Musical material can be grouped in musical chunks, as notes or as groups of notes. Then methods can
be used for altering the output, all according to OOP techniques'*’. With this embedment in a LISP
Programming Environment, there are no real restrictions and limitations to the way in which it can be

used.

Graphical Realtime Algorithmic Composition Environment (Grace)'*® & Common Music (3.9.0) has a
long development History. Originally started in the 1980’s, its core software foundation consists of the
Common Music" packages and has been further developed into Grace by Heinrich Taube (et al.).

As Taube states in his book, Notes from the Meta-level : “It is primarily intended for student
composers interested in learning how computation can provide them with a new paradigm for musical
composition.” (Taube 2004, p. IX) It offers all the flexibility of using an interpreted language
(Listener). Also GUI objects exist in order to help the user to obtain a graphical representation of
certain output. Common Music is, just like ACToolBox and AthenaCL, embedded in a LISP
environment. This offers the use of an interpreter and a Listener for the user. As Taube states in Notes
from the Metalevel: “The system was originally written in Common LISP but now includes both
Scheme and Common LISP bindings ...” (Taube 2004, p. 10). This gives it the maximum
extendability for the user; own source code can be applied, even in several LISP dialects'®. This
intermingling of the LISP programming language environment and composition tools is a strong

concept.

CACEA4 presents itself as a computer composition environment with a strong focus on the use of
statistics and IR as single blocks. This approach is directly reflected in the overall design of the GUI.
The user is encouraged to play around with the specific parameters for generating the desired output.
There is no underlying music-language construction available at present (May 2016). Just by changing
the order of connections in the processor window of the current project, the output will have different
output. The focus of CACEA4 is the use of statistical tools and techniques, together with processes from
the field of Artificial Intelligence and Information Retrieval. All tools are focused on visualising data
in two different manners: numerical and graphical (mostly in scatter plot format). The techniques
involved in the process will be treated as a closed box where the only way of influencing the process is
by using the given parameters. Alterations on the stream can be made, by using the process parameters

involved. By attaching the Translator object to the end of the process chain, everything can be

57 Even a ‘Kill’ menu option can be found, once in a while necessary for stopping infinite loops.

'8 Version: Grace 2016 and Common Music 3.9.0. May 2016. And can be freely downloaded from Apple’s
AppStore.

139 Grace — consists also of several other packages: JUCE v3.0.3 (c) 2016 Julian Storer, S7 Scheme 3.5 (17-Feb-
14), Sndlib 23 (c) 2016 William Schottstaedt and oscpack 1.1.0 (¢) 2016 Ross Bencina.

1%An overview of all implementations can be found in ‘Notes from the metalevel’: (Taube 2004, p. 11).

95

translated to the Score object. The final results can be saved as a SMF. When saved in this file format

it can be used in other Music Software for further use/editing.

But how does CACE4 function, compared to the other three Composition programs?

CACEH4 is focused on the user by offering a GUI. Menus, Windows and other GUI Controllers offer
their advantages: no steep learning curves are involved. They also have their limitations: a lack of
extendibility for the user is one of the major differences compared with the other three composition
programs'®'. Although this was originally not part of the design, it has to be taken into consideration as
a future feature of the CACE4 program. A real-time playback/listening option is the other major
consideration that has to be taken into account with future versions of CACE4.

The other large conceptual difference is that CACE4 is not designed for being an ‘all-round’
algorithmic music composition program, for now'®. Its initial goal was to be able perform data
analysis in the area of Al and (M)IR and to apply these tools in the domain of music. Therefore the
functionality was restricted and strongly relies on the Graphical aspects of a GUI (pixel plotting and
the use of colour). By incorporating a LISP interpreter into the CACE4 application however, it would

make it much more suitable for use by students, not only for exploring (M)IR techniques, but also

through programming (in the Listener) LISP code as well.

' This lack of extendibility will be addressed in the final conclusion as well. See Chapter 7 for more details.
And has to be taken into consideration for future versions of CACE4.

192 Although the usability for creating interesting musical material is still relevant: future versions of CACE4 will
focus on this topic, by developing new CACE4 Objects. They will focus on different, more music related
aspects.

96

Chapter 6
Analysis of four Compositions created with the aid of CACE4

6.1 Introduction.

During the process of working on CACE4, the possibility for creating a composition for the first
time was with a preliminary version'® of the software in 2013. This resulted in Argos Pansonos a
composition for Piano and Computer (Max/MSP).

A year later (September-December 2014, at the Zentrum fiir Kunst und Medientechnologie (ZKM),
Karlsruhe, Germany) with a more evolved version of CACE4, I started working on the second
composition Zwicky’s Box for ensemble and computer. The last composition is Scope for ceramic (or
metal) tiles, 2 string drums and computer, and has been made with one of the latest versions of
CACE4'*,

During this period I also worked on MMM Transformations in pink. This is part of a larger on-going
project with the Dutch artist Willem Willemse and CACE4 has been used here to generate STD MIDI

files for the four compositions.

6.1.1 Artistic reflections.

As stated in section 2.2 (page 10), Bense’s philosophy of generative aesthetics gives a clear
description for describing a synthesized aesthetic product and the terms required to meet it. He states
that every new piece of Art should be preceded by an aesthetic analysis based on structures described
in mathematical terms. According to Bense'®, there are four different aesthetic structures: semiotic
classifications, metrical, statistical and topological, which we apply to reflect onto the design,
workings and artistic output of CACE4.

Bense originally categorized music in the group of semiotics, but by replacing certain musical
composition processes by applying mathematics, music can be ordered into the other three categories
as well.

According to the first of the four aesthetic structures, the semiotic classification for both CACE4, the

program (written in an artificial programming language) and the artistic output, Music (as a language

193 This was not a standalone version of the application CACE4, but rather a development version embedded in
the LispWorks IDE as a separate menu item.

14 CACEA4: version 0.56.07 467 — august 2015.

195 " At the moment there are four different ways of making abstract descriptions of aesthetic states (distributions
or configurations), which can be used to produce aesthetic structures—the semiotic (employing classifications)
and the metrical, statistical and topological methods—the latter three are numerically or geometrically orientated."
(Reichardt, 1971, p. 4)

97

of symbols and signs), are directly reflecting the definition of semiotics'® as the science of symbols
and their intrinsic meaning. By not using an artificial music language as the core of the design of
CACE4 however, the other three artistic structures mentioned apply as well. The definitions of
metrical, statistical and topological artistic structures are reflected in the mathematics involved. These
domains of mathematics: statistics and topology, are applied as functions in CACE4 objects and their
direct application in a CACEA4 strategy. The strategy, as created in a CACE4 Processor object, needs
to reflect artistic ideas about the creation of an artistic product (in this case a music composition),
symbolises the artistic process with boxes (of smaller, modular processes) and arrow-lines for
connection and direction of the flow of the, in this case, numerical output, as part of the artistic

process.

The process of creating musical material used for all of the compositions is a reflection of the modular
strategy elaborated in a CACE4 Processor object window. As a prerequisite: structuring and
characterising the musical composition into separate parts and hence defining the structure for the
composition as well. Each part has to be well defined with specific musical constraints and
characteristics. As can be observed in the three compositions for musician(s) and computer'®’, each of
them is divided into sections that have a distinct musical impression and an artistic description of a
process. These sections are mostly constructed using smaller parts containing contrasting musical
content and serve to bind these larger sections creating the notion of starting a new direction and flow
in the music, in a way that could loosely be compared to a cadenza. Some examples of this can be seen
in the following excerpts from the scores: Argos Pansonos and Zwicky’s Box (see Appendix 5:

portfolio compositions, for the scores).

For example, in the composition Argos Pansonos for piano and computer, Appendix 5 (portfolio
compositions) rehearsal mark B, bars 28 — 31 (see score page 4); rehearsal mark D, bars 46 — 49 (see
score page 5) and F, bars 77 — 79 (see score page 6); show larger sections with these smaller parts in
between. They can be seen as cadenzas connecting the larger sections with smaller, contrasting

themes.

Other techniques involving smaller parts, but now used as building blocks for larger parts, can be seen
in the composition for sextet and computer: Zwicky’s box Part 3, rehearsal mark H, Bars 101 — 103
(page 19); I, Bars 105-109 (page 20),J, Bars 111-115 (page 21) and K, Bars 117-123 (page 22). Here
chords are used and the number of bars increases in time, from 3 bars to 4 and ending with 7 bars. This

creates a slowing effect on the music.

166 Semiotics (or Semiology) is defined as the study of signs and their meaning, The American scientist Charles
Sanders Pierce is widely recognized as founding scientist (see https://www britannica.com/science/semiotics).
197 See Appendix 5: the following compositions: Argos Pansonos (piano and computer), Zwicky’s box (ensemble
and computer) and Scope (percussion and computer).

98

The use of smaller parts is not restricted to vertical use, with a strong vertical connection between the
instruments such as the as chords as be seen in the previous examples, but also more as independent,
horizontal layers, as can be observed in Zwicky’s box: Part 1, D, bar 55 — 69 (pages 12 - 13) and Part
5,M, bars 164 — 191 (pages 28 — 31).

Other uses of these blocks where to use the output of a calculation for different staves. Several
instruments were calculated at once, for example in Part E, bar 71 to Part G, bar 96
(pages 14 — 16). All four compositional techniques were used in order to create a more dynamic

development of the musical material as opposed to a more static music.

Since one of the ideas in this thesis (see chapter 1, page 1), was to find structure and connections
between sets of data and apply them in the domain of music, CACE4 was developed in the search for
these properties. Found data (as .cvs files on the internet, see section 6.2.1, page 102), was used for
analysing and transforming data to map them onto musical properties such as pitch and dynamics,
delta start time and duration. In particular, the application of the same function for obtaining values for
pitch, dynamics, delta start time, rhythm and duration demonstrates a link to the ideas and practice of
serialism in music. Since the intrinsic value of the data is given by the applied function on the found
data sets, it is, according function definition, (mostly) gradually, changing over time. This whole
process of transforming data into music parts with distinct musical characteristics should reflect these

properties of the analyzed data.

This is not the only artistic consideration and technique involved by creating the compositions. By
implementing the CACE4 STAM object (see section 5.5.2, page 56) and the CACE4 STAPS object
(see section 5.5.4, page 64), this processing is used for creating several, more closely related,
variations of output. The different outputs of these generated blocks of data can be obtained by fine-
tuning parameters inside the objects used in the CACE4 strategy. This method of working is
comparable with the compositional technique of thematic development (variations) and is, as such,

well known in music.

Defining the compositional process as a feedback or looped process for obtaining output, the plasticity
of the material generated (or found as data on the internet), mimics the methods of the Visual Arts
(sculpting and moulding) by exploring and changing strategies, in combining different CACE4
objects. This approach can be used to create series of different but closely related sequences and
mimics the creation of series in Visual Arts. Chisels, hammers and palette knives have been replaced

with mathematical equations for ‘sculpting’ (music) data. This preoccupation with structures as lines

99

and surfaces is a typical Dutch'® subject in the visual Arts. Mostly known by works (paintings) from
Jan van Doesburg, Piet Mondriaan'® and Jan Schoonhoven'™ (Paintings and Plastic Art). They
researched harmony in the visual arts by means of logic. Geometrical patterns as lines and surfaces
combined with the use of primary colours was their starting point of expression. This use of geometry
can also be observed in the computer graphics of Willem Willemse, who was inspired by the works of

Jan Schoonhoven.

By classifying CACE4 to the metrical, statistical and topological methods proposed by Bense, (pre-)

musical output'”' created by CACE4 can be seen as output in strict (logical) mathematical constructs.

Although different tools are used in the process of creation in both the visual arts as music, their
intrinsic function: to add more order and eliminating chaos and reducing complexity by applying tools,
artistic rules and restrictions in order to reach an artistic goal, is comparable. In CACEA4, all is done
within a computer program and this therefore restricts the artistic rules applied to logical constructs,
based on algorithms. By processing the data with the aid of mathematics, CACE4 and its artistic
output reflects Bense’s philosophy on the artistic measurement and is subject to Birkhoff’s equation

(see equation 1, page 9).

6.2.1 ‘Argos Pansonus’ (or the meaning of k-means).

A composition for piano, computer and a 2D/3D Sound System, duration 12 minutes — 2013/15,
Argos Pansonos'” is the first (algorithmic) composition I have created with the newly written
composition program CACE4 -Computer Assisted Composition Environment 4'”*. As I often do in my
compositions, I take a mathematical approach for solving a specific problem and use it as a certain
kind of idea and 'theme' in my compositions. Argos is an algorithmic composition where the central
algorithm is the k-means statistical algorithm, from the family of Hierarchical Cluster Techniques. By
making use of several sources of data and selecting and slightly altering (scaling) them, I was able to

transcribe the result of the mathematical output into a score, playable by a human being.

18 The author has Dutch nationality (The Netherlands).

1% These are just two names of the well-known Art movement of Neo-plasticsm (or “De Stijl”, in Dutch), of the
late 1910’s and 1920’s. More details can be found at: http://www .tate.org.uk/learn/online-
resources/glossary/n/neo-plasticism

170 Jan Schoonhoven does not belong to the group of Neoplasticism, but can be seen as elaborating on this idea of
minimalism in the Visual Arts. More about Jan Schoonhoven and his works of Art can be found at the URL:
http://www tate.org.uk/art/artists/jan-schoonhoven-1907

'"! Created as a SMF, which can be seen as a contextual sequence (stream) of symbolic signs in only 0’s and 1’s.
172 The title is derived from the old Greek saga of Argos'’* Panoptus, the mythical figure with many eyes, as an
icon of vigilance and wakefulness. I transformed his nickname: the Greek word panoptus (= pan means
surrounding and ‘optus’ means seeing) as an analogy into ‘pansonus’ (‘surround' hearing), which has a strong
link to the 3D surround sound system which will be used for the live performance of the composition (a 3D
Ambisonic loudspeaker dome).

'3 CACE4 is the fourth version of a composition program I wrote in LISP, some parts of which date originally
from 1993 as the CAC I program.

100

As a piano composition accompanied with live use of a computer, Argos Pansonos moves between
passages based more on harmonics and timbre alterations by the computer, which acts as an invisible
second 'player' and more rhythmical 'streams', as a single movement. By using close microphone
techniques (and by making use of a PA-system'” in a live-performance situation), we can utilize 'tiny'
and soft sounds played inside the piano. This, in combination with DSP, alters and enriches the sound
palette I use as a composer. The inside of the piano is not the only sound source used. As a contrast
and musical counterpoint, more rthythmically developed patterns of notes are used as melodic lines,

acting as 'cadenza’s' and interludes in the composition.

135 45

empty space

15 mt

0 /360

audience
S11

225 = ,— 315
e = Engineering

<4.5>x1.50

270

/' S1-512=Axys U-14 speaker "\ Sw9-10 = SubWoofer
Speaker SetUp Hor Axys (22.5 COW ROTATION) Vert Axys (COW) Distance to L.
S1=Axys U-1. 25 0 5.0-6.0mt
52=Axys U-14 675 0 50-60mt
83 = Axys U-14 1125 0 5.0-6.0mt
$4.=Axys U-14 1575 0 50-6.0mt
5= Axys U-14 2025 0 50-60mt
S6=Axys U-14 2475 0 50-6.0mt
S7=Axys U-14 2925 o 5.0-6.0mt
S8 =Axys U-14 337.5 0 50-6.0mt
S9 = Axys U-14 - ceiling 450 0 50-6.0mt
$10 = Axys U-14 - ceiling 135.0 0 5.0-6.0mt
11 = Axys U-14 - ceiing 2250 0 50-6.0mt
$12 = Axys U-14 - ceiling 3150 0 5.0-6.0mt
Sw13 = Axys SubWoofer 45 0 6.0-7.0mt
Sw14 = Axys SubWoofer 225 o 6.0-7.0mt
(CCW = Counterclociwise) Calculus
1 Person: occuping space: persons per kwadrant
0.85m (L) * 0.55m (W) = 04675 m2 Blok Left = 41 persons: 10- 13- 18
Blok Right = 34 persons: 9 - 12- 16

(=>0.5m2)

Figure 65 A Top view of a 3D Audiospace design for Argos Pansonos.

The starting point was to create a composition which would use the inside of the piano as a rich sound
source, which makes it a good source for the DSP Max/MSP patches as well and alternate it with
normal use of the keyboard which would act as a counterpart in this piano composition of fifteen

minutes. The composition can be played in a 2D (horizontal circle) or 3D (as a dome) speaker setting

174 A PA-system is short for a Public Address system. It is a general term used for a sound amplification system
consisting of loudspeakers together with their amplification and generally incorporating a sound-mixing console
(sound mixer for short).

101

(see Figure 65, page 101).

After finishing the implementation of the k-means algorithm in the CACE4 program, I looked at the

internet for data in a (X,y) - 2 dimensional format and found some useable text based Excel data sheets

at the site of the British Geological Survey. It concerned data from gravitational measurements from

all over the UK'®. T used two columns in the Excel data sheet: free_air_an and Bouguer_an,

representing both different measurements (as can be seen at the right hand side of Figure 66, below).

SURVEY_AREA
BRISTOL CHANNEL __00_09
BRISTOL CHANNEL _00103
BRISTOL CHANNEL _00_79
BRISTOL CHANNEL _00102
BRISTOL CHANNEL _00_77
BRISTOL CHANNEL __00_49
BRISTOL CHANNEL _00_11
BRISTOL CHANNEL _00_26
BRISTOL CHANNEL __00_66
BRISTOL CHANNEL _00_04
BRISTOL CHANNEL _00_42
BRISTOL CHANNEL _00_02
BRISTOL CHANNEL _00_96
BRISTOL CHANNEL _00_55
BRISTOL CHANNEL _00_97
BRISTOL CHANNEL _00_28
BRISTOL CHANNEL _00_12
BRISTOL CHANNEL __00_69
BRISTOL CHANNEL _00_44
BRISTOL CHANNEL _00_76
BRISTOL CHANNEL _00_54
BRISTOL CHANNEL _00_73

BRISTOL CHANNEL __00_34

© c oo ooo0oo0oo0oo0o0o0o0o0o000o0ocooo oo

BRISTOL CHANNEL _00_52

STATION_ID STATION_CODE LATITUDE

51.411339
51.216999
51.566502
51.227501
51.567169
51.49567
51.472672
51.425671
51.516499
51.4165
51.522499
51514
51.219669
51.485668
51.223499
51.414669
51.491669
51.506168
51.520329
51.561001
51.47467
51.540829
51.589329

51.478168

LONGITUDE GRID_EAST GRID_NORTH STATION_ELEV
-5

-2.92667
-3.0835
-2.68667
-3.03533
-2.70917
-2.8705
-2.88783
-3.12683
-2.998
-2.9005
-2.875
-2.73383
-3.09367
-2.96233
-3.08183
-3.0995
-2.884
-2.9025
-2.85383
2746
-2.96933
-2.801
-2.69417

-2.90417

335560
324330
352410
327710
350850
339580
338340
321670
330760
336760
339300
349080
323630
333190
324460
323550
338630
337370
340770
348290
332680
344450
351910
337220

168490
147030
185560
148150
185650
177820
175280
170280
180250
169050
180810
179760
147340
176790
147750
169030
177390
179020
180550
184990
175580
182790
188110
175910

ELEVATION_UNIT BOUGUER_DENS BASE_CODE OBSERVED_GRAV FREE_AIR_AN ITOT_TC ITOT_TCZ TOT_TC

© o oo ocoooo0oo0oo0oo0oo0oo0o0o0o0o0ooooo oo

27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27

27

1186.41
1178.34
1201.31
1177.52
1201.45
1193.09
1191.6

1191.44
1196.95
1187.52
1194.71
1197.32
1179.45
1192.71
1179.35
1191.62
1193.2

1194.28
1194.49
1199.62
1191.61
1196.18
1203.03

1191.32

-9.91
0.8
-8.71
255
-8.63
-10.68
-10.14
6.15
-8.66
9.26
-11.43
-8.07
0.07
-10.18
-0.37
5
-10.22
-10.42
-11.46
-9.92
-10.31
-11.58
-9.01

-10.91

0

Q

O OO oOoOOOOOOOOODDNDDNDND PP OO

Figure 66 A screen shot of the .csv used for creating musical material for Argos Pansonos.

Figure 66 shows the first entries of the original .csv file

material. While this original data has a certain repetitive pattern, more contrasting material with a

176

with data used for creating the musical

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01

TOT_TCZ BOUGUER AN SOURCE_COI

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

-9.33
-0.22
-8.13
-1.97
-8.05
-10.1
-9.56
-5.57
-8.08
-8.68

-10.85

different (numerical) output was needed. A Gumowski-Mira fractal calculation'”’, also displaying a

degree of repetitiveness, was chosen (see Figure 36, page 66). This would result in distinct musical

output when the data has been translated (CACE4 MIDI Translator object) to the musical domain.

Both input streams are regrouped xy-paired output sets ordered into different categories (see Figure

67, page 103), as they are analyzed with a (separate) k-means cluster analysis algorithm.

'75 The data were retrieved from the site (http://www bgs.ac.uk/home.html) of the British Geological Survey (in

the Standard BGS Land Gravity data delivery format) in .csv format. It is a file consisting of gravitational
measurements of the UK continental plate (off-shore).

17 The screen shot used is the output of the program File Spy. This is a simple utility program for looking ‘into’
files and displaying additional header information. It can be downloaded from the Apple Appstore.
77 The Gumowski-Mira fractal calculation is one of many fractal calculations available in CACE4 as a MATH

Generator object.

102

File Generator-Load Data Text/Doc File-13:56:58-3:9:2013 Math Generator-Mira-14:16:47-3:9:2013

ML - MIR Magipulator-HCT - k-Meahs Clustering-13:58:36-3:9:2013 ML - MIR Mﬂr\ﬁulﬂtor-”ﬁ - k-Means Clustering-14
input input
AT Manipulgtor-ART2 (neural network)-14:0:2-3:9:2013
input
output

I * MATH Manipulator-Scaling-14:22:17-3:9:2013

MATH Manipulator-Scaling-14:4:52-3:9:2013
input Informer-Informer-14:8:29-3:9:2013
output input output

*\ *
Translator-14:6:1-3:9:2013 /

5 -14:7:46-3:9:
oI L1 7246-3:9: 2013 Translator-MIDI Translator-+£:22:4-3:9:2013
T
—_ output

1nformer-ln£orm:r-14:21:47-3:9:2

input |

+

+

Figure 67 The CACE4 Processor strategy for Argos Pansonos.

As a third source for obtaining material, I used a short sound file of a piano sound (made in the inside
of a piano) and made a spectral analysis with the SPEAR program (see Figure 68, page 103). After
filtering the spectrum -30dB'”® and creating a SPEAR analysis file with lesser partials, it was now

possible to import this file into the CACE4 program and to make use of this program with all its

possibilities.
)
SN———
—
. —— -
—
-
2000 N—
- S
P
o
R R S
—— —— — ——
T | T T T T

Figure 68 A screen shot of the spectral analysis of the used piano sound as seen in SPEAR.

178 A first attempt was at -40dB but this was not useful for creating note material for the composition due to the
fact that too many partials were calculated, resulting in too much data, not well defined and widely spread, being

generated. By using -30dB spectral amplitude filtering, and drop all values below this range, the important
spectral information was left over and thus less data points were created.

The analysis obtained in SPEAR was used to create a direct translation from the spectral points (time,
frequency and amplitude) into a spear partials text file and as such has been used in the strategy and
then finally translated by the CACE4 Translator object for creating a SMF as showed in Figure 67,
page 103.

6.2.2 Musical analysis.

Section A, Bars 1-12'"°
As previously explained, the text-based SPEAR analysis file was the basis for this part A, that acts as
an introduction to the composition. Several of these files were used: one major file together with
several smaller ones. After reading these files into the CACE4 program, they were grouped using k-

means and then linear scaling it into the MIDI domain'*

, thus creating a SMF. It was now possible to
bring this material into the score of the composition. Using the well-known music notation program

Finale, some alterations and minor edits of the material were done by hand in this program.

Section B, Bars 13-31.

In the second part of the composition, some Gumowski-Mira fractal-generated material was used and
analyzed with the k-means algorithm. With this procedure, it was possible to regroup the material thus
generated and to make a selection based on these groupings. In section A and B, Max/MSP is used for
transforming the sound of the piano with multiple adaptable delay lines. Delay times are changed in

real-time (after an analysis of the input signal).

Section C, Bars 32-45.

A sound file input was used for analysis by the program SPEAR (see Figure 68, page 103). The
material for creating the score for the inside of the piano was retrieved from the spectral analysis, done
again using SPEAR. A selection of a smaller part of a sound file which consisted of a recording made
earlier (2005) from a sound from the inside of a piano (a wire-brush hit the strings with the aid of a
full sustaining pedal to obtain a sound with a rich spectrum and long duration over time). Only the
rhythmical patterns created by this analysis (made out of partials) for duration and delta start-time of
the notes was used. The spreading of the pitch information over the full range of the piano was done
by hand, thus creating the separate pitches for a register form of notation (6 separate registers were
used). It was the intension, in this part of the composition to switch to register notation, which is more
suitable for notating sounds created in the inside of a piano.

The main function for this part was to act as a bridge between the 'normal’ sounds of a keyboard,

" The musical analysis makes use of the rehearsal marks as can be found in the score of Argos Pansonos.
180 See for a more detailed explanation of this process at Chapter 3, with an extended description of how the
CACE4 program works.

104

although the sound has been altered by multiple delay-lines and sounds from the inside of the piano.
This was achieved by focusing on the use of piano chords, also derived from spectral analysis of the
piano sound and constructed into chords. The actual duration and delta start-time of the material was,
in this part, ignored. The chords have been modified and altered by the use of multiple real-time
harmonizers, where delay-times and the amount of harmonization will be altered by real-time analysis

of the piano chords.

Section D, Bars 46-49.

This rather short section acts as a bridge (or very small interlude) to the next one.

Section E, Bars 50-67.

Section E returns to register notation as this time small chains are used for playing the inside the
piano. As the main DSP treatment of the sound real-time time stretching (dilatation) of the signal done
by FFT (= Fast Fourier Transforms) was chosen. This results in the smearing of spectral components
in real-time, while movement in the 3D audio space is added after the signal has been changed.
Modifications have been made in the duration: 400% disturbance (= one of the Manipulator processes
available in CACE4) has been used to change the original material that was derived from the
previously analyzed piano sound file. At bar 57 a change takes place. Instead of making use of small
chains wire brushes are now used for playing on the strings of the piano and this makes rhythmical
playing more precise. The change back to using harmonizing as the major DSP treatment of the signal

is due to its spectral enhancement and is musically connected to the previous part.

Section F, Bars 68-79.

This represents a major break with the previous sections. Halfway through the composition we go
back to the keyboard. Although multiple interactive, real-time delay lines are used to alter the signal,
the main focus is still on playing 'normal' melodic lines on the keyboard together with strongly
accented chords in the last measure. Together with tempo MM = 64 this creates a ‘back to earth’
feeling in the middle of the composition. In the last measures of this section, the melody line gets

transformed into the last two chords: providing a gradual change into the next section: G.

Section G, Bars 80-84.

This short section of just 4 measures acts mainly as an interlude to transform the composition from
more melodic lines and chords to more sound orientated (from the inside of the piano). Chords are
broken up in higher and lower parts, both notated on transposed staffs (the right hand: up one octave
and the left hand one octave down). Thus chromatic, slowly plaid chords as a prelude to section H are

created.

105

Section H, Bars 85-96.

This part is, for the last time, played inside the piano. The tempo suddenly drops to MM = 60. Now a
metal guitar slide is used, slowly rolling along the strings (with much use of the blocked sustain
pedal). Sometimes it is used to produce very short and quick-slides in order to produce more squeaky
sounds. The time stretching of the FFT's, as also used in the previous section E, are prolonged until the
end of this section. It all ends with a bang: the slide is 'thrown' on the bass strings and mirrors the

beginning of this section, which started with the same sound.

Section I, Bars 97-100.

These four bars are acting as an introduction for the final part J of Argos Pansonos. Material for these
four bars was separately created with a Brown fractal in order to create material with a large spread
and as random as possible. Musically, a more pointillist character is obtained and is used in this

isolated way as an upbeat to section J.

Section J, Bars 101-111.

This is the final part of the composition. DSP alters the sound in real-time and slowly the composition
comes to a halt.

Tempering the dynamics (going from f to ppp), part J starts with chords altered by the DSP.
Harmonising and FFT stretching is used to alter the chords and their spectra. Glimpses of the previous
chord-based section (G), prepares the composition for its final bars. The dynamics are broad: from

subito p to fff is used. It ends with a small dissonant cluster: d-e flat-e, slowly decaying from fff to p.

6.3 ‘MMM_Transforms in pink’: four pieces with computer

animation.

MMM _Transforms is an ongoing (for the past ten years) collaboration project with the Dutch
graphical artist Willem Willemse. ‘MMM _Transforms in pink’ is the second DVD-video project and
will, just like the previous series (‘MMM _transforms in black and white’), consist of a total number of
twelve animations with music. The first four new animations with music of this second DVD-video

project, ‘MMM _transforms in pink’, are presented here.

Willem Willemse, commenting on his animations:

“Our experiences don’t end for us in the visible world. We perceive more layers as we look into the
universe or feel under our skin. It’s not static, it moves and makes sounds. In order to move within
these realms, science devises models, religion uses rituals. As an artist I try to express this connection

in my animations. The animations create a feeling of constant change. They conjure up different

106

atmospheres: now the feeling of space, then that of a microstructure or of growth.

It is concerned with our meso- or middle-entity in relation to the micro- and macro-worlds.

The pictures seem to occupy the border between the material and immaterial.

Using 3-D programmes, elementary forms are animated into arbitrary organic bodies. Visual elements
such as transparency, layering and light give a distinctive expression to the animations. These
elements have evolved out of my earlier paintings with movement being the most important addition
to this basis. The animations are three to four minutes in length. Static forms alternate with slow and
more fast moving formations. The forms appear from a point or out of a matrix, move within this and
progress, to an arbitrary order. By matrix I mean origin, an order without hierarchy.

In MMM _transforms, both the layering and transparency are maintained; the matrix or grid, as an
equal distribution of points, is present as a visual element in addition to the randomly formed surfaces.
The future is determined by the polarity between these two visual facts. The matrix stands for
precision, determinism or the ordered; the random surface represents uncertainty, the malleable or
indeterminate. This seems like an abstract fact, but on reflection it extends far into our thinking and

acting.”’®

6.3.1 Musical Analysis and the use of sound.

On the sound for MMM _Transforms in pink :
After finishing the previous series (‘MMM _Transforms in black and white’), I had to rethink the
concept of how to approach this new series with for now, four new compositions. This time I didn’t
want to make use of electronic sounds as before, but felt it should have a more ‘acoustical’ approach.
Plain instrument sounds, although generated by samples (used software: MachFive — MOTU), were
the initial sound source. All short compositions (3°40) should have as an initial starting point a rather
‘normal’ acoustical feel. In time, alterations would change this ‘normal’ behaviour to create an
atmosphere of ‘verfremdung’: the instrumental sound is starting to loosen itself from the original
acoustical instrumental foreground. Speeding up of the notes over time, plus the use of artificial
layering combined with artificial movement in a 2D acoustical space, adds to this concept as well.
Each short piece was made separately for each animation and the whole should be regarded as an
animated installation, where movement of the graphics combine, or collide, with the music in the
(exposition) space'®*. Four instruments: piano, cello, celesta and timpani, were chosen as the initial
sound sources. Although rather uncomplicated in sound and form and each only 3:40” in duration, it is

always a challenge to make the right decisions at the right moment.

81 Comments made by Willem Willemse at his exhibition at theP-Arts Gallery 27" of June 2011, Zeist The
Netherlands.
'82 And as such should be played back with a modest sound level, just enough to “fill’ the room.

107

Here the music not only supports the animations without sacrificing too much autonomy, but also at
the end of each piece envelopes the visual forms as well, carrying the graphics with the sound into the

acoustical space.

This has, at present, resulted in four etudes for spatial composition, instrumental sounds and computer

graphics: ‘MMM _Transforms in pink.’

Compositional remarks:

As mentioned before, SMFs were generated in the CACE4 composition environment. K-means cluster
analysis techniques were combined with fractal generated material, scaled in the right pitch domains.
Sometimes left over material was used, generated for the piano composition Argos Pansonos.
Unplayable by a human being, it was still usable as musical material interesting enough to be slightly

altered and transformed for use in these four compositions.

While all the graphics are computer-generated images (executed in Maya'®®), it would have been
straightforward to also use it for synchronization of the music with the graphics. This would result
however, in a rather static image/music relation. To avoid this perfect synchronization, the artistic idea
of creating dense layers (of sound) and to position them, more freely in time, has been chosen. This
results in a more freely artistic translation of the movements in the Computer Graphics. This can be
observed in the four compositions (see Appendix 5, DVD-video). The choreographed movements in
the Computer Graphics are translated into more independent, abrasive layers of dense clouds of sound.
The use of movements however, is not only restricted to these sound layers but is also translated to

movement of the sounds in a 2D (Dolby Surround 5.1) Audio space.

The four compositions will be part of a larger DVD concept, which will be realised in the latter half of
2017. All musical material has been generated in the CACE4 composition environment, using only the
MachFive2 (MOTU) sample library. Mastering and additional editing was all done in Digital
Performer (MOTU). It was used for layering of the generated MIDI material and controlling their

movement in space.

There is one more important artistic consideration: the final, larger DVD-video installation project is
to be presented as a sound and vision installation at a gallery, and not as a movie (or concert). The
final music will be played on a 5.1 home theatre Dolby surround system at a rather low sound level,
just filling the acoustical listening space. Since being presented in a gallery, the audience will mostly
not listen to the whole of all the pieces, but only excerpts, as they move along and visit other parts of

the exhibition.

'83 Maya® is commercially available computer animation software from the software company Autodesk. See
for more information on Maya: http://www.autodesk.com/products/maya/overview

108

63.2 Musical analysis.
orgamatrixflf(1-12)vert.

The first of four compositions for computer animations: orgamatrixflf(1-12)vert, makes use of normal

piano samples as a single source of sound.

-~p
so? o
L
i ime

%t *“mg o

Vg e 9 e,
o < e
l:w‘ 9 5.7:..%‘?%‘ . 2
-)

Figure 69 orgamatrixflf(1-12)vert, computer animation: Willem Willemse.

In this composition left over material, generated for the piano composition Argos Pansonos, was used.
By shortening the duration and the inter onset time of the MIDI material in a sequencer, clouds of
notes were created: unplayable by a human being, but still interesting as musical material with a
certain sound quality. By altering these parameters it is possible to use the same material for creating
separated single notes, or as a vast and dense sound cloud, thus providing contrasting sound fields for
this composition.

It is a continuous process of deconstruction and rebuilding of the material, thus mimicking the flow of
the computer graphics. After approximately two minutes in the composition, trills are used as new
musical material. By constantly switching between accelerando and ritardando, combined with sudden
changes in tempo, the ongoing process of construction and deconstruction is musically emphasized.
Small changes in the attack curve achieved by altering the slope of the curve create new sounds,
perceived as bowed string sounds. These are used as small contrasting fragments between the larger
and louder movement of the trills being played. Strong movements of the sound in the acoustical (2D)
space, together with these deconstructed trills, create swirls of sounds culminating in the final

movement which is perceived as a ‘lifting up’ of the sounds before they disappear, one after the other.

109

sdspheres(10-13).

The second composition, sdspheres(10-13), uses two different violoncelli samples: bowed and

plucked.

Figure 70 sdspheres(10-13), computer animation: Willem Willemse.

By slightly altering pitch and movement of the sample sounds, dense layers of shifting pitches can be
heard, if listened in a surround audio setup. The dense layers of the bowed string sounds create a
phenomena which can be perceived as an ‘acoustic bath’ of dense harmonics. Small changes in pitch
fluctuation can be perceived as very small frequency shifts.

On a few occasions this completely surrounds the listener. The ongoing tension it creates, reflects the
mechanical movement of the grid pattern in the computer animation. This results in a strong tie
between the computer animation and the music, not built on synchronic events, but on movement as
displayed in the computer animation. In the final part of the composition, the slow movement in the
computer animation does contrast strongly however with the tremolo patterns played by the celli

samples thus creating a strong tension between sound and vision.

sc-planes(6vert)zzz.

The third composition sc-planes(6vert)zzz, uses celesta samples as its only sound source.

110

v

Figure 71 sc-planes(6vert)zzz, computer animation: Willem Willemse.

Just like the movements of the computer animation, every sound should be floating around in space.
Sometimes it has well-defined borders and sometimes it blends into the background and completely
disappears. For this composition this has been achieved by altering (prolonging) attack times of the
sample and by movement of the sound in the acoustical space. This process creates diffuse sounds,
strongly blending into each other, but with an overall static musical character. In this animation the
music is not ‘pulling’ or ‘pushing’ at the visuals. Instead it creates an ongoing flow and mimics the

process of the slowly evolving computer animation.

dbl-rotormatrixzz.

The fourth composition, dbl-rotormatrixzz, uses timpani samples played rolled and as single strokes as
the sound source. The computer animation calls strong associations to mind: that of a futuristic virtual
machine or the picture of galley slaves rowing by the beat of a drum are just two of these. The
‘machine’ look-alike and the continuous movement of a ‘rotor’ as can be seen in the computer-stills of
the animation (see Figure 72, page 112), finds its direct reflection in the mechanical rolled timpani

sound.

After the computer animation fade-in, the timpani rolls are shifting in pitch and slowly transform into
single short bursts of timpani rolls. They play a continuous game of hide and seek, symbolizing the
individual, single (sound) component as a part of the whole (computer animation). Alterations in the

pitch of the rolls coincide with the more sudden movement of the sound in space.

111

Figure 72 dbl-rotormatrixzz, computer animation: Willem Willemse.

Slowly a diminishing of sound density takes place. A continuous thinning of the sound leaves results
in a remaining single roll sample. It acts as a point of rest just before a renewed build up of the sound

density is used for the finale of this composition as the computer animation slowly fades away.

64 ‘Scope‘.

Scope is a ten minute solo percussion composition for six ceramic tiles and two spring drums, all
set in a 2D/3D surround audio sound system, together with real-time DSP done by a computer with
dedicated Max/MSP patches. The original compositional idea was to create some blocks of data, with
certain musical properties. The second step was to create, with the aid of CACE4 STAPS
Manipulators, new output with the same numerical properties. The numerical properties of the data are
analyzed in order to use them as selection criteria for newly generated numerical material. The newly
generated output should have the same numerical properties as its example data. No other rules or
restrictions are applied: only the mathematical algorithm and the order of processing have been taken

into account for creating the musical material for this composition.

64.1 Musical Analysis and the use of CACEA4.

As a stable first version of CACE4 (v00.55.07) had just been finished, it was intended to use this
composition as an opportunity for testing this first version of CACE4 as a stand-alone application as
well. A roadmap was therefore required in order to design the right strategy for this composition as I
intended to calculate the output for this composition in just one run. The overall form (A-B - A'-B'-

C - D) allowed me to include two statistical property sieve modules (CACE4 STAPS object). Both are

112

used for analysing a specific part of the composition (A & B will be imitated by A' & B'), and
calculate an 'imitation' of the original data, based on certain statistical rules: minimum-maximum
range and standard deviation. Due to the fact that random based algorithms have been used for
generating the initial data (Part A & B), the effective use of other analysis procedures as available in
the STAPS object is limited. Certain characteristics of more random based algorithms are not that
easily detectable. The use of a minimum-maximum is important: this gives the initial range, and the
use of the standard deviation, which shows us the spreading of the numerical values of the data. The

initial size of the floating analysis window is small (2 samples'®*

) if this is compared to executing the
standard deviation calculation, where a substantially larger analysis window size of at least 20 samples
is required in order to be used effectively.

The overall procedure was: first analyze the (input) data and then, with a second calculation, generate
new (numerical) material with the specific characteristics. This was repeated several times before
satisfying numerical material was generated. The process window, with the chain of data flow
(strategy) of the composition Scope, shows the way the processing was designed for the composition
(see Appendix 1.3).

Part A'® and Part B act as independent Generator blocks, each with its own processing chain. Part C
and Part D are independent Manipulator blocks, where each also has its own processing chain. It uses
the output from the original Generator objects for analysis and re-synthesis of new output.

Finally, Part E and Part F act again as independent Generator blocks, each with its own chain of

processing. All 6 streams, as seen in Appendix 1.3, have their own independent processing chain.

Each stream also corresponds with a separate block, or part in Scope. The chain has been built with a
left to right orientation, for visual purposes only. The first, most left branch of the chain consists of a
Brownian fractal calculation acting as a Generator object. This is followed by a Pruner object, to
remove the x-values of the calculation and a Scaler object, used to scale it to MIDI range values (in
this case: into MIDI keys and MIDI velocity values). The Scaler object is also used to scale the inter
onset timing and the duration to the appropriate timing values (all values are in milliseconds). At the
end of the chain, a CACE4 Merger object adds every output (6 streams) together as separate blocks of
data, one after the other. Appendix 1.5, shows the result after the CACE4 Merger object has done its

job. The first branch of the chain of strategy has its output plotted on the x-axis between 1-180.

The second branch starts with a random cloud fractal (based on sin(random) and cosine(random)
functions). To further alter the output of the fractal cloud calculation by disturbance, a CACE4 object
with the same name is used: Disturber. This was done in order to have a greater, non-related spread of

the material generated by the fractal calculation. This is followed by a Scaler object, as is the case in

'8 When presented in xy number pairs a single sample consists 2 members (numbers).
'3 This corresponds with the rehearsal markers in the score.

113

the previous stream. The output is Part B in the composition (Appendix 1.5, output on x-axis between:
180-400). The third chain (part C in the composition), output on x-axis between: 400-800) is the first
imitating branch of our strategy: it uses the output of the first chain (after the Pruner object) to analyse
and create a newly generated block of data with the same numerical properties. Appendix 1.4 shows
the GUI of one of the STAPS GUI objects with the original input plotted with blue pixels and the
newly calculated output is plotted with light-green pixels. The fourth branch (D) of the strategy is also
‘imitating’ a previously generated data stream: in this case it is the second branch. After the CACE4
STAPS object has been used, a newly generated data block with the same numerical properties is

added to the output stream.

The last two branches make use of fractal calculations in order to generate numerical data. The fifth
branch, part E in the score, is generated by a bifurcation fractal (or Feigenbaum diagram). Attached to
its output is a CACE4 Disturber object, in order to disturb the generated output. After scaling has been
applied, it is added and can be seen in Appendix 1.5 as output on the x-axis between 800-1480. The
sixth (F) and last branch of our strategy chain echoes the first one. It also makes use of a brown fractal
calculation of type: 1/xA5, generating dense numerical output (plotted close to the x-axis) with some
elements spread out along the y-axis. By using a different scaling factor, a different data block is
created, but with shared numerical properties (with the first block). By using a CACE4 Translator
object, the data can be translated into a stream with approximately equal musical properties as the

initially generated data block.

Appendix 1.5 shows the GUI display of a CACE4 Informer object attached to the output of a Merger
object. All merged (or in this case: added) data blocks are sequentially displayed. The six separate
blocks can easily be visually distinguished from each other. After merging all data, a single CACE4
Translator object ‘sends’ its output to a CACE4 Score object where it can be saved to file as a single
SMEF. Further alterations and editing of the material has been done in Finale, in order to create a score
of the composition. The previously generated SMFs are handled as a block of ‘rough’ musical
material. Notes are deleted or translated to the notational forms necessary for writing the score. In
more detail, this means that certain notes were completely transformed into a different notation and
others, when no longer needed, are deleted. There were no strict rules involved in this process, just a

compositional idea.

6.4.2 General remarks on the process of composing ‘Scope’.

Before putting all of the calculated output in the score, certain notational aspects had to be decided
upon before the process of creating the score could be started. After some research, it was concluded
that there is no standard, nor even a beginning of standardization, of the notation of something as
trivial as a spring drum. This gave the opportunity for inventing one’s own notation system. I decided

to use two staves per spring drum: the upper one is used for 'normal notation": e.g tapping on the top

114

and side. The second stave is only used for actions with the spring of the spring drum (see Figure 73,

page 115).

Part 1 For 2 Spring drums, 6 Ceramic tiles and a computer

»=60 (NB: J=1sec)

Spring Drum (Tap on Top/Rim) 1 ‘H_ii
Spring Drum Movement 1 ‘H_ii :
@ @ (centre of skin)
play on skin ﬁ P
; | . y 14 D 1
Spring Drum (Tap on Skin) 2 T A S e
,,,,,,,,, AR —
———————————————————————— 7] (Wigel
< L . av ('ie) Subito <
Spring Drum M 2 EZ; 1 I’ I ——+ } EI’ + }
P e +- v ? ‘%’ F—4
: —_—
6 Ceramic Tiles :IE
A
= e e |a |a
[
ww

Figure 73 The first 25 seconds of the score of the composition Scope.

Also a notation symbol for the hole, on top or the side of the instrument (covering and uncovering of
the hole) needed to be chosen (see Figure 74). Before deciding on which symbol to use, the check the
literature'®® was always checked and a decision was based on what is more common to use in such a

situation.

cover whole hole, ToT open hole, tap on top

——————

-
o — 64 —5:4-

® — O
. & 0 ISP 5 Y
— >)
—_— st ”'ff
W ——J vy

let ring
n .

mfe——"ff —

Figure 74 A 10 seconds excerpt of Scope, showing different notation styles.

When Scope is performed live, it interacts with an ART2 Neural Network Max/MSP object'*’.

Parameters are extracted from timbral features in real-time. Detection of fO and partials are packed

together with other parameters to create a vector. This vector: #(DST pitchl amplitudel, ... , pitch5

18 Tn this case two older books were used. Risatti: New Music Vocabulary, A Guide to Notational Signs for
Contemporary Music(Risatti 1975) and Kurt Stone: Music Notation in the Twentieth Century, A practical
Guidebook (Stone 1980).

187 For the recording found on the DVD-video accompany this thesis (Appendix 7) a version with hand control is
used instead of the ART2 Max patch. With future performances this will be replaced by this ART?2 object and
Max patch as discussed in this thesis.

115

amplitude5 duration instrument) is then sent to the ART2 NN for further classification (see Figure 76,

page 116, for details about this vector).

michelk@wxs.nl
031115

‘seed 4123

8.721491

N\
\ \

\
ém

input vector

\
\

Z
2

ART2 arguments

1 Number of Output Categories (2 -

20,

2 Number of Learning Cyces [1 -

100

3 Vigilance [0.001 - 0.998],
o patters as input vector

[1-100),

5 Outputverbose NolYes (0/1)

\\ .

’a,” ‘xqv‘ \n \% N\ \ \ N\ LN
5oz fosiofosss [oz Lross Bvas Lo P =T oo T]

Figure 75 View of the ART2 NN Max object and patch in edit mode.

A LEAP motion infrared sensor provides extra sensory information of the position of the hands in

space. This will be used for extracting information on which ceramic tile has been played by the

performer.

E =
=

category
michelk@wxs.nl
031115

input vector
DST p1

ART2 arguments.
1 Number of Output Categories 2- 20].

2 Number of Leaming Cydies [1- 100,

3 Viglance [0.001 - 0.999),

4 Number of as input vector [1 - 100].
5 Outputverbose NofYes (0/1)

ART29150.94 10

number of
vectors

number of
category categories

category 0 category 1 category 2

category 3

category4 category 5

a1 p2 a2 p3 a3 p4 a4 p5 a5
[0 o7z Bssae fPosis [oss oo] o [s To T oo |

category 6

dur

instrument

category 7 category8 category9 ?

Figure 76 View of the ART2 NN Max object in a max patch in presentation mode.

116

All this generated information is added to the vector in order to make a classification by ART2
possible. After the classification has taken place, parameters will accordingly handle controllers for

changing sound parameters.

The whole idea of creating an automatic controller is a very practical one. Most of the time during
concert performances, there are far too many parameters to handle by one person in real-time.
Therefore the need for a certain kind of intelligent decision maker is obvious. By using this approach
early on in my compositions I am able to add extra ‘hands’ for controlling patches in live-

performances.

6.5 ‘Zwicky's Box’.
A composition for chamber ensemble consisting of flute (doubling alto flute), bass clarinet, piano,
percussion, violin and violoncello, together with a computer with Max/MSP patches for carrying out

DSP and surround sound. Duration is approximately 20 minutes.

6.5.1 Compositional Process.

The original idea for this composition for ensemble came from an idea of Fritz Zwicky'®. His
General Morphological Analysis model, later named Zwicky's box after him, is a metaphor for
handling complex problems'®. It is represented as a 3 dimensional cabinet drawer with many drawers.
This 3D drawer stands for the complex problem as a whole. Each smaller drawer represents a tiny sub-
problem of the whole. Instead of trying to solve the big problem all at once, one takes care to focus on
every smaller, but solvable, sub-problem of this box. Therefore complexity can be handled and is
therefore solvable'”.

To use this approach for composing, the analogy between solving a complex process and creating a
composition needs to be understood. In order to solve such a complex problem - and it certainly can be

stated that any composition, composed of x number of instruments, together with the use of computer

programs etcetera, is a rather complex process — means that a way has to be found to cut it up into

'8 Fritz Zwicky is famous for his ideas on missing matter in the Universe. He introduced the concept of Dark
Matter and Dark Energy as a model for this missing matter. It is regarded nowadays as an important idea in the
standard model of elementary physics and in the world of astronomy. More information about Fritz Zwicky and
thefacts about Dark Matter and Dark Energy can be found at:

https://www .learner.org/courses/physics/unit/text.html?unit=10&secNum=2

18 Fritz Zwicky describes the model as a new method for structuring and doing an investigation of the total set
of all possible relationships contained in a multi-dimensional, non-quantifiable, problem space.

1 Fritz Zwicky extended the idea of Morphological Analysis into a more generalized version: “I have proposed
to generalize and systematize the concept of morphological research and include not only the study of the shapes
of geometrical, geological, biological, and generally material structures, but also to study the more abstract
structural interrelations among phenomena, concepts, and ideas, whatever their character might be.” (Zwicky
1969, p. 34)

Much more information about Fritz Zwicky and this concept of General Morphological Analysis can be found
at: http://www.swemorph.com/ma.html

117

much smaller problems'".

As a loose analogy, and certainly not according to all the rules of General Morphological Analysis, I
used it as a model in order to tackle the problem (hence our composition). I decided to work separately
on certain aspects of the compositional process. Timbral aspects were left out of the initial calculation
of the note material and were done at a later stage in a separate CACE4 project, thus providing tables
with timbral information for the instruments. Figure 77, page 118, shows the timbre table for the

percussion instruments.

06/26/16 21:56 Zwicky's Box version: 1
Timbre inventarisatie

Instrument |IG #|Timbre No # [Timbre-group [Sound/Timbre

Percussion B-1 22 22 (27-5) (3”3, 3*9, 9*3)
Chimes 2 pitched- 41842 P1 B,L+D Beating, LV + Damp
Clackensplel 2 pitched- 43844 P2 B,L+D Beating, LV + Damp
Cymbals (2) 5 45846847848845 [P3 BO,CH,B,L+D |BOwing, CHains, Beating, LV + Damp
WoodBlock (1) 2 50851 |P4 B,L+D Beating, LV + Damp
Vibraslap 2 52853 |P5 L+D LV + Damp
Bassdrum 3 S4B55856 [P6 R,B,L+D Rubbing, Beating, LV + Damp
Snaredrum 1 57(P7 B Beating
Ralnstick 2 58859 |PB SL,S+L SlLiding, Short - Long
Shaker 2 B60&61 |PY SH,5+L SHaking, Short - Long

1 62 (P9 Silence

22

Figure 77 Showing timbre numbers related to Sound descriptions.

These numbers can also be plotted in a xy-axis plot (see Figure 78, page 119) and by giving them a
colour coding (percussion is the blue column) and by putting them into separate Excel columns, these

events could be spread over time as well (see left excel column, Figure 78).

52 |00:03:35:271 87 o7 215271

53 |00:03:42:568| 14 222568

54 |00:03:46:568 86 96 226217

55 |00:03:49:568 62 229865 T# Perc

56 |00:03:57:162 85 95 237162 2 ° . .

57 |00:04:00:811 BO 240811 p I

58 |00:04:04:460] 12 244460 o1 | T Tol LT T 1]

59 |00:04:08:108 88 08 248108 50 1%
60 |00:04:11:757 83 251757 58 S *

61 |00:04:15:406 19 255406 57 - - PUEREN
62 |00:04:19:054 86 96 259054 56 *

63 |00:04:22:703 262703 55 * .

64 |00:04:26:352| 12 266352 54 + +

65 |00:04:30:000 90 100 270000 | § 2 > T

66 |00:04:37:298 277298 2

67 |00:04:40:946 86 96 280946 | & o

68 |00:04:48:243 15 288243 e IR

69 |00:04:51:892 89 99 291892 8 e

70 |00:04:59:189 299189 47—

71 |00:05:02:838 88 302838 PR

72 |00:05:06:487 64 306487 45

73 00:05:10:135, 19 310135 44

74 |00:05:13:784 91 313784 4

75 |00:05:21:081 321081 29

76 |00:05:28:379 B0 328379 4. '
77 |00:05:32:027 16 332027 0 50 100 150 200 250
;g gggzgggf; 12 353919 86 346622 Time (00:00:00:000 - 00:18:00:000)
80 |00:05:57:568 93 357568

Figure 78 The timbre numbers displayed in a xy-axis plot (time - timbre number).

! In my opinion, this is a very interesting approach, and also very well adapted to the world of computer
programming and algorithmically created music, where a computer program can be seen as a description of the
problem. In order to solve this problem it has to be cut up in smaller chunks with clear stated goals. These
smaller chunks represent a much smaller problem where a direct a translation to functions and procedures is now
possible. This strategy is needed in order to make a functional description of the algorithms needed for writing
the software application and solving the problem.

118

Initially of great help for investigating all different sorts of timbral options, it is not used in detail (see
Figure 78). The leftmost column represents exact timing (this option was not used for the creation of
the composition) and was used more as an advisory table as to how to evolve instrumental timbre lines
over time. The timbre numbers were calculated by a fractal calculation (dragon curve) and mapped
over small ranges (timbre number range) thus providing the number sequence with the right sequential

order of timbre numbers.

Other problems involving the use of microphones, 2D/3D sound systems and the use of DSP in an

ensemble setting were set aside (in a separate box) to be solved at a later stage in the process.

After initially finding four interesting and also related data sheets about global warming and climate
change'??, it was decided to use all four, as this would provide more than enough material to work
with. The first glimpses of the data showed that the spreading and also the semi-periodicity, was

interesting to use for creating musical patterns (see Figure 79).

Generator File Graphics Output

Index: Output:

1 .07
2 2
3 7.6
4 13.37
5 18.22
6 23.2
7 25.26
8 2SN
9 19.03
12 12.99
11 7.2
12 2.43
13 22.58
14 22.68
15 22.78
16 22.35

Figure 79 CACE4 Informer object xy-plot of one of the .csv data sheets used for Zwicky's box.

A transcription of the original MS Excel sheet into a comma separated data sheet was the first action

193

to be undertaken ~°. After taking special care not to modify any data or otherwise change the original

192 After some research on the Internet I found the URL: www.data.worldbank.org with some interesting easy
accessible databases. This gave me the opportunity to download a CVS/MS Excel sheet at the Climate Change
knowledge Portal: It's Historical data about the change of global temperatures. Used data can be found at:
http://data.worldbank.org/data-catalog/cckp_historical _data

193 The original procedure was to eliminate the original header text and replace all comma's (find and replace
them with the IDE of LispWorks) by a tab (character, and save it for now as four plain text files. (Tab spaced).

119

order of the sequence, each file could now be read into a CACE4 FILE Generator object and work
started upon them.

The next step in the compositional process was to design a strategy, to transform the data into the
desired patterns for our composition. The four data sheets provided material suitable for generating
four blocks of approximately five minutes musical material each. This altogether gave more then
twenty minutes of material for the composition.

By adding an extra CACE4 CLUS object I, the strategy was further developed by clustering the data
into different groups, resulting in a series of chord clusters generated for the piano. Furthermore,
Merger, Pruner and a Translator object were added to the strategy chain, for further processing before

creating a SMF of the transformed output (see Figure 80).

File Generator-Load Data Text/Doc File-13:37:17-12:11:2014

output

MATH Manipulotor-Scaler-13:38:38-12:11:2014
aTH-MAN T OEE
output

MATH CLUSTERER Manipulator-CLUS: Clusterer-13:39:35-12:11:2014

DATA Manipulator-Pruner-13:47:8-12:11:2014
DATA-MAN nput
output

pulater-Merger-13:49:13-12:11:2014

DATA Manti,
DATA-MAN input
output

Informer-Informer-1

input
DATA Manipulator-Pruner-13:51:15-12:11:2014

MAN input
output

Translator-MIDI Translator-13:59:24-12:11:2014
TRANSL ™ T nput
output

Figure 80 One of CACE4 Project strategy setups used for Zwicky's box.

The output of the first strategy developed was very promising, especially for the piano, with broad but
slightly clustered chords with a nice initial rhythmic flow (as can be heard in the composition at Bar
20 - 24, Part A). Further on in the composition this method of working was developed into a strategy
for orchestrating the composition. This was mostly achieved by ‘spreading’ the calculated notes by
hand to the other instruments. This approach gave the advantage that, although different instruments

play the notes of the calculated chords, the overall character (density and harmonic context) of the

120

chords is preserved'®®. This was, however, not the only strategy developed for creating different parts
for the instrument. As a contrasting approach, for creating ‘melody’ lines with a slight solo character,

fractal calculations were used.

For the percussion part, especially those parts involving glockenspiel and chimes, the algorithm used
for creating musical material was based on a Sierpinski (dragon-curve) fractal calculation, where took
a specific part with some overlapping notes was taken and fitted it into the score (section F, bar 63 —

90). Even single bars (bar 154) were obtained this way.

This same method of working was used for the melodic lines of the flute (part O, bar 212 — 213). This

approach, as previously stated, gave the line a more independent, solo character.

After initially working with the previously generated musical material, it was soon realized that a
slight change in strategy was necessary. It became rather obvious that too much material was being
generated. The major spreadsheets with the 4 tabs generated too much material, although musically
interesting. Also the overall musical character of the generated material pointed too much in a note
biased direction. This was something to be avoided, due to the fact that the original idea about the
composition also involved a more 'sound-based' or timbre approach. Together with the interactive
DSP, which added extra timbre alterations, it was decided to drastically cut back on the use of this
material in the score. The notes should be more separated from each other, with much more - silent -
space between them, in order to create room for the DSP. The use of the DSP means not only the
alteration of the timbral qualities of the sound by signal processing, but also to move the sound
through the listening space. This movement costs ‘processing’ time and is perceived by the listener as
an independent moving sound source.

Concluding that 'less is more', this was turned into a new directive for obtaining new material and as a

guideline for further development of our deployed strategy.

The final step in the development of our strategy and work-flow, was to think about how to use the
aspect of timbre and sound combinations of the instruments (see Figure 77, page 118) in a coherent

way, together with the DSP.

Modifying the sound and timbre of the instruments with the aid of variable delay lines, harmonizers,
granular synthesis and the use of FFT time stretching, came to mind as an initial starting point for
doing DSP. Why all these different possibilities? Firstly they provide more DSP possibilities of doing
processing for transforming the sounds involved. Secondly they share a single DSP property in that
they all make use of some sort of windowed signals and therefore are not totally alienated from each
other. There is an overlap in perceiving these processing phenomena and how they ‘sound’ together.

Several MAX/MSP patches involved with the ‘live’ transformation of the sound combine this

19 This method of working can be seen as a complementary process approach of a piano reduction of a
composition. It is the other way around with respect to a more regular composition process, which is more
working from the inside out.

121

approach in a single processing option. Gradual transformations from one DSP process to another DSP
process are possible. Furthermore, by creating a matrix mixing option, one is able to transform the
instrumental lines separately according these matrix settings. This matrix based approach makes it
possible to link timbral transformations to the matrix of instrumental sounds (see Figure 77 and Figure
78, both on page 118). Not strictly applied, as has been previously stated, the tables are used as

advisory tables and as a starting point for bringing DSP and instrumental timbre together.

By now all the drawers of Zwicky’s box are filled with smaller problems, by breaking down the ‘big’
compositional process into much smaller, separately solvable chunks, thus creating a solution for the

big problem, Zwicky’s box, the composition.

6.5.2 Musical analysis.

Section A, introduction, bars 1 — 26.
Zwicky’s box starts with a few chords based on Brownian movement (1/x2) calculation, played by the
piano. It creates a harmonic layer where individual instrumental sounds can easily be introduced by
the other instruments. The overall character is that of an introduction: a slow movement (tempo
MM=60) where the DSP is used to add a certain rhythmic character to the more static sound layers
created by the piano chords and the use of percussion (from bar 5: bowed cymbal).
Sections B, bars 27 — 41, C bars 42 — 54 and D bars 55 — 70.
These three smaller parts all belong to Part I of the composition. By using the same file as CACE4
input'® for all three parts, the group is given a coherent musical character with shared musical
characteristics. Together they create one large movement of open, more silent spaces where the DSP
easily blends with the instrumental sounds (bar 27 — 69). Accents in instrumentation slowly evolve

over time, from more piano and percussion orientated, to flute and bass clarinet at the end of Part I.

Part II:

Sections E, bars 71 - 82, F bars 83 — 89 and G bars 90 -97.

Part II consists, like Part I, of three smaller parts combined into one larger movement. The first bar of
this part places the piano directly into the centre of attention. Played more vividly, it gives Part II its
contrasting character to the first part'®. It is much more vertically orientated, which also contributes to
the more vivid character of Part II.

DSP: The main DSP for Part II is the use of FFT for stretching the signal (this can be heard as

195 The file: Basin_temperatureCRU-1.txt (our first worksheet of the spreadsheet with Global warming data) was
initially used for generating musical material.

19 For creating note material in CACE4, I used the third tab of the Global Temperature Data .csv file:
Country_temperatureCRU-3.txt. In this case Absolute Time was used instead of Inter onset time (for calculating
the start time of every note). As a second step in the composing process, a melody line, originally intended for
piano was taken and adapted for bass clarinet as the solo voice.

122

‘hanging’ notes and chords), slowly transforming into a more grain like character. This gives it its

rather harsh’ character and clashes, once in a while, with the instrumental sounds.

Part III:

Sections H, bars 98 — 104, 1 bars 105 - 110,J bars 111 — 116 and K bars 117 — 125.

These four smaller movements are combined to form part III. They are all rather short phrases with a
more sudden, explosive character. Section H starts as a single movement played by the piano but
suddenly spreading to the other instruments as well. This adds to the expressive, explosive, sudden
burst character of the phrase. Section I is a more prolonged and deferred version of the previous
explosion character. Section J repeats this pattern but also combines them. Up to the end of this part
the sudden character is also prolonged and deferred as a memorizing mirror of the previous two parts.
The musical intention of section K is to finish Part III by repeating the pattern of explosion and
prolonging as shown’ in the previous three sections (H, I and J). It is even more emphasized by
introducing, at the end of this part, a vaguely recognizable IV-V-I harmonic movement (but without
the I). This all contributes to the overall musical idea of finishing Part III. For an overall timbral effect,
which nicely combines with the used DSP (12 independent variable, interpolate delay lines), a
glockenspiel was used. This has a distinguishable timbre and therefore adds a shining, shimmering
effect to the chords. Based on continually changing delay times, parameters of detected discrete input
events as amplitude and frequency of the analyzed signal are used to change these delay times and

volume in real-time.

Part IV:

Section L, bars 126 - 163.

Part IV inherits its musical character from Part III, but creates a (slow) turning point in the
composition. It is conceived as one, much longer movement on a much slower time scale (MM Tempo
= 32). Therefore melodic and rhythmical patterns unfold over a much longer period of time. The DSP,
as continually changing Harmonizers, is used to alter the chords on a more microtonal base. There is
no table used with presets of detuning the harmonizer in cents. All necessary parameter changes are
calculated on the spot. Therefore a change in selected instruments for generating these input
parameters can take place. First the piano is one of the sources, this shifts gradually when the bass
clarinet starts to play. Together with the flute it is the major source for input parameter data. In total

this creates a kind of strange chord progression effect: a slight feeling of ‘estrangement’ takes place.

123

Part V:

Section M, bars 164 -191.

The piano part is played inside the instrument with a blocked sustain pedal and the player uses metal
wire brushes to play on the piano strings. For this reason the use of register notation with 2 staves,
each consisting of 3 staff lines, adding up to a total of 6 lines was chosen. For making use of this
technique and to do the necessary calculations in CACE4, it was decided to 'shrink’ the output'®’ of the
pitch calculation by restricting it to only 6 different key/pitch possibilities. By means of linear scaling
of the output in only these 6 possible MIDI key values, it was possible to transform the output of the
CACEA4 calculation into notes for these staves, after adjusting the durations of the notes by 200% in
Finale and moving double notes to other instruments (bass clarinet, flute and violin). This longer
movement, with less note material, focuses more on sound creation inside the piano and manipulation
by the DSP, in comparison to the previous Parts. Multiphonics and muffled sounds played by the bass
clarinet, flutterzunge, trumpet tones and pitch-bending from the flute, together with long glissandi by t
cello and violin all contribute to this more sound-based part. Processing added by DSP as variable and

fixed delay lines, supports this idea even further.

Section N [bars 192 —204]. This second part of Part V is mostly centred on just a few notes, ranging
from b to e-flat. A gradual feeling of slowing down and hence creating a point of tranquillity and

renewal is its musical intention.

Part VI:

Section O, bars 205 — 214 starts with glimpses of previously introduced musical material. This quasi-
repeat enhances the feeling of conclusion to this composition. Pitch-bending and multiphonics played
by the bass clarinet, together with flute patterns created by a Sierpinski fractal calculation, are a few of
the repeating musical elements. The use of the DSP repeats as well: variable delay lines are the main
processing that takes place, effectively picking up the multiphonics played by the bass clarinet and
creating an instrumental bridge to the swirly melodic lines of the flute. By using the bass drum as an

extra sound layer of low rumbling noises, the whole creates a feeling of subtle tension.

Section P [bars 215 — 224] is the last part of the composition. It starts with a louder passage consisting
of piano chords, bass drum rolls and fortissimo bowed cello notes. The whole has a musical character
of slowly vanishing into nothing. Piano chords together with very high-pitched notes (a and c), played
arco by the violin, are the very last notes played. The DSP is further enhanced with the use of the FFT
Max/MSP patch by stretching the sounds. This creates a rather grainy sound field and leaves on with

the impression of a final ‘grinding’ of the sounds.

197 The file: Country_precipitationCRU-4.txt (our fourth worksheet of the spreadsheet with Global warming
data) was used for generating musical material.

124

653 General remarks on the process of composing Zwicky’s box.

The whole process of composing music in this manner, from the outside to the inside, is the
opposite to the normal procedure of composing, which most often makes use of the process from the
inside (composing note by note) and works slowly to the outside.

It is, to a certain extent, more comparable to the process of sculpting: to getting rid of what is too
much and not desirable for the composition process. This means that besides experimenting with the
data in order to obtain desired results from the CACE4 program, developing a strict compositional

idea is essential for making the right decisions at those ‘experimental’ moments'®®.

Unfortunately there are some pitfalls inherent to this way of composing music.

Firstly, there is the possibility of generating too much material (Ouch!), which makes the process of
choosing and selecting far more difficult. It is easy to make the wrong decisions by deleting the wrong
notes in this process of data reduction.

Secondly, there is a real chance of making errors in the process of transcribing newly generated
material to the other instruments. Errors in range and transposition are easily introduced in this
process. This can be, to a certain extent, avoided by doing all the transcription processing of the
material to the other instruments, in the CACE4 program itself. This idea needs further development,

but it could ease this process.

19 Although I have initially fixed ideas, I always do some experimentation with the generated material purposely
in order to obtain more different material and to discover to a certain extent, new possibilities with the data. (To
pick up the unthinkable and to be open and especially be surprised by the generated material obtained, which is
not a bad approach in the world of Big Data, MIR and creativity).

125

Chapter 7 Conclusion.

In this last chapter design and functionality of CACE4 will be evaluated. The initially stated goals
of functionality and design will be used for this critical analysis.
The four Major design criteria, as stated in section 4.1.1,4.1.2,4.1.3 and 4.1.4 (pages 20 - 22) are:
1/ The application should be a fully operational version but also ‘open-ended’ for future
developments.
2/ The modular design of the CACE4 program should allow for easy adaptability. Therefore the
process of developing a new CACE4 object (software) module should be rather easy and inside certain
time limits.
3/ The application can be used for educational purposes.

4/ The use as a computer music composition environment.

7.1 Final conclusion.

Although the application has proven its usefulness, as originally conceived and designed, as an
open strategy building tool for analysing (non-musical) data and for using the output for creating
musical output, it has its limitations and shortcomings. As previously stated in section 5.8.2,
the object’s ease of extendibility is not comparable with, for example, Max/MSP where Java, as an
interpreted language, can be used to quickly create new Max or MSP objects. The more detailed and
elaborate possibility to create external objects programmed in C, however, is comparable to the way
CACEA4 is extendable. It operates at the same level of coding; source code which needs to be compiled
into a new external object (MAX/MSP) before being fully operational and can be used in the software

environment'®’

. Also due to the fact that it is a stand-alone application, a newly delivered®” application
has to be created first in order to be able to work with the new CACE4 object. Using a template®™' (a
file with example program code) however, for creating a new object, is comparable with the way
Max/MSP operates. One of the advantages of CACE4 is that it is not a DSP program and does not
need a real-time DSP-engine. This makes it possible to fully exploit the possibilities of the desired

algorithm in combination with its specific GUI. No real-time software-engine is necessary and

19 Before this feature can be build into a newer version of CACE4, a few more additional changes in coding has
to be made, so that the user can explore CACE4 by adding extra Objects in the Listener. These direct changes
involve more program structure (on the level of coding) by using defgeneric() methods.

200 LISP terminology for the process of compiling and linking.

2! The design and programming of a template file (with all the necessary coding for creating a new CACE4
Object - fully functional with all slots for I/O (STREAM Input/Output and COS&MOS?2 Link) has already been
done in the early stages of developing CACE4. By making use of these templates the development time for fully
creating a functional - new - object is now brought back to a few hours for the easy ones, what could extend up
to 2 or 3 days development time for the more complex and elaborated one's (This is including the time for
developing the algorithm and the corresponding functions in order to have a working, first version of the
process).

126

therefore a process such as k-means can be applied to the input as a whole*”.

One of the major goals was to have a functional and running software package as a stand-alone
application, but also with a maximum of adaptability. This target has been fully accomplished by
taking this goal and making it a core program design rule of CACE4. Object Oriented programming®”
techniques, as CLOS provides, together with the use of defgeneric() method combinations, have been
successfully deployed and used for the development of CACE4, thus speeding up the process of
implementation. As such, OOP techniques were used for implementing CACE4, thus combining
criteria one and two. Without the aid of these techniques, this would not be achievable in such a short
period. There are still portions of the code however, that need some redefinition to be more CLOS
compatible, with the aid of further deployment of defgeneric() functions. Some refinement in
implementing Controllers in order to ‘hang’ them in the object, for the interface (the way CAPI
implements the MVC paradigm), needs extra attention. This will also result in extended GUI’s with

new possibilities.

The third goal, of creating an application useful for education has still to be proven in a live situation,
although my ten years of teaching undergraduates at the University of the Arts, Utrecht, in the domain
of Music and Informatics indicates to me that the way it is now, with the GUI and the use of SMF
output in order to playback the result (as yet, unfortunately not real-time) in any available MIDI
sequencer, will be much more appealing to the students, than an application without a strong graphical
representation. It shows them the graphical and also numerical output in several ways, and by being
able to compare the original input with the calculated and plotted output. This is a very useful feature
in order for students to get acquainted with the domain of statistics applied on data, music and sound.
As has been previously stated in section 5.8.2, CACE4 needs a LISP interpreter and a Listener
incorporated in the environment to extend the usability for educational purposes. With this feature it

would be possible to teach LISP in the same computer composition environment as well.

The way CACE4 presents itself is strongly relying on its GUI for operation. Although speeding up the
process of designing a strategy, it comes at a certain cost: it keeps the inner operations of the software
package hidden from the user. The GUI of each CACE4 object is dedicated to the process it

represents.

The implementation of extra explanation features by showing the source code of the program together
with additional diagrams and linking it to the specific mathematics necessary for full comprehension

of the process would increase its educational value.

202 K-means is applied in the domain of DSP as well. In a real-time situation the signal size (chunk size: mostly
1024 or 2048 samples) is the band-limited signal we use for operating on.

203 Design criterion one (a fully functional program) and criterion two (the modularity of the design) have a
certain connection. Both criteria can be combined into a single list of OOP-design features.

127

The fourth criterion: is CACE4 as a computer composition program focused on the use of statistical
tools suitable for creating Acoustical and Electronic Compositions, requires a more detailed answer.
At present, three major instrumental compositions and four compositions for computer animations
have been created with the aid of the CACE4 program. They all have in common that an initial idea as
a kind of meta-level concept, was used in order to set up a strategy. This initial idea needs some
refinement and more detail. This would be reflected in the CACE4 program by adding some extra

objects, for example, a Context object, which makes this strategy approach clearer for the user.

CACEA4 has proven to be very useful in creating SMFs for use in Electronic/MIDI based compositions
such as the four composed for the Computer Animations of Willem Willemse. Smaller chunks of data
with interesting musical properties are easily generated and manipulated in the CACE4 program®”.
CACEA4 proved to be a program for quickly generating SMFs suitable for further editing and

manipulation in a MIDI sequencer program.

The first instrumental composition, Argos Pansonos, was composed in 2013 and the last one, Scope,
was composed in 2016, a time span of 2.5 years. The four shorter MIDI based compositions for
Computer Animation have a comparable time span. Not all CACE objects were available in the earlier
version, and therefore it is difficult to compare them. They all had relative ease and speed of creating
interesting musical material in common. With the flexibility offered by CACE4, smaller experiments
could be easily done and discarded if not sufficient. What is missing that would bring the program as
such to another level altogether, would be the implementation of context (as a separated object). This
would make the program much more valuable for use in the domain of music style recognition®”.
Although originally designed for use as quantitative analysis on (unknown) data sets and without the
aid of a priori knowledge, the software tactics, together with the CACE4 objects, can certainly say
something about the underlying mathematical constraints. A direct link to particular characteristics of
music style, without using any qualifying context, is therefore not possible. With the aid of a few other
CACE4 objects such as the Splitter, Merger and Scaler however, a certain pseudo-context can be
added. By using the order of the Stream, giving every member of the sequence a certain range (min-

max), 'forced' (hidden®"®) constrains can be applied.

The objects most useful in searching for certain statistical characteristics and therefore can be used to
work with these pseudo-constrains, are the CACE4 STAM object (section 5.5.2, page 56) and the
CACE4 STAPS object (section 5.5.4, page 64). They offer the GUI for entering parameters for forcing
new output to have those mathematical properties as desired by the user. Serial and atonal music can
use sets of tools based on both simple and advanced mathematical statistics and data analysis as input

for a musical composition.

204 The implementation of MIDI controllers would enhance its use in an electronic Music composition even
further.

205 As previously described in more detail in chapter 3.2 & 3.3.

296 These constrains can be seen as pseudo or false constrains while they are unknown to the system.

128

Other similarities in musical functionality can be found. For example the Clusterer, as a cluster (chord)
generator, has the same functionality as a chord generator in tonal music. They both share this same
musical functionality although their results can be perceived differently.

Analysis with processes as EM (Expectation Maximization, see section 5.6.2, page 81 for details) can
be applied in the domain of counterpoint, to find certain characteristics closely related, but also still
with a certain independence and cluster them accordingly, thus creating new groups of sorted

(clustered) musical material.

Although outside the original scope of this thesis, but available in CACE4, fractal calculations can be
applied as melody or rhythm generators. One of the well-known characteristics of a fractal calculation
is self-similarity and it is thus capable of creating streams of data with a very strong internal
relationship. When calculating the correlation coefficient (r) from several fractals and attractors, one
notices that the r is often between [0.5,...,1.0]*". This suggests a stronger correlation in product
moment and rank-order. This strong internal relationship can be exploited for generating melody lines.
Fractals as the random cloud and the dragon curve (Sierpinski) with output generated according
f(x)=sin(x) or f(x)=cos(x) provide quasi periodical repetitiveness and can be well deployed for

generating rhythmical patterns by using their output as delta-time and duration of the notes.

These are just a few comparisons in musical functionality that can be found in CACE4. Especially the
use of ‘extracting’ certain qualitative characteristics and applying them to a newly created stream in
accordance with these qualitative properties opens up a whole new field for experimentation and

future development.

Overall, the speed of working and the possibility for doing experiments in CACE4 has contributed

greatly to the musicality of the compositions.

7.2 Future development plans.

When creating a software package such as CACE4 with such a number of different domains and
topics involved, there always remain issues for further improvement and future development. The
most important ones are listed below. Some ideas exist already from the beginning, having been
developed during the first design stage of CACE4. Others have a more practical background and came
into being during the further development of the program.

A music-language construction is, at the time of writing, not available, but will be provided as a

separate CACE4 object module. This idea was originally omitted since CACE4 should not be music-

27 Some of the fractals with their correlation calculations (all numbers are rounded to 2 digits): Julia fractal:
Pearson: 0.73, Spearman: 0.66, Kendall-tau: -0.62, Mandelbrot1: P: 0.0, S: 0.01 K-tau: 0.77, Bifurcation: P:
0.76, S: 0.82, K-tau: 0.85, Automata: P: 0.0, S: 0.01, K-tau: 0.99 and Gumowski-Mira: P: 0.52, S: 0.51, K-tau:
0.14

And some of the Attractors (All as 2 Dimensional) attractors: Henonl (2D): P: 0.01, S: 0.38, K-tau: -0.50,
Lorenz (2D): P: 0.80, S: 0.79, K-tau: 0.94 and Rdéssler (2D): P: 0.19, S: 0.16, K-tau: 0.99

129

language based. As a separate object embedded in the CACE4 Environment however, it brings a new,
strong concept to CACE4: that of (musical) context.

The Score object, where everything is translated to a SMF can only provide a MIDI format 1 file. This
is a severe limitation and preparations are being made to extend the possibility of saving in another
SMF format of type 2. The other, rather practical issue, is the lack of a real-time (MIDI) playback
option as previously mentioned. All compositions could have been created more easily and more

directly if this option had been available.

The development of a new CACE4 Translator object for creating Lily Pond files has also to be taken
into consideration. Although the solution used - the importing of the CACE4 SMF into a program as
Finale — is, for now, workable. The other Translator object that could be interesting to develop would
be a CACE4 SPEAR Translator object for creating SPEAR (partial text format) files. Results,
especially from larger data sets, could be directly written in this format for further editing and use in

SPEAR.

This last object opens up the possibilities of bringing (some) DSP techniques and knowledge into the
CACE4 environment. This idea needs further development: a small DSP Library for composing the
electronic composition Plouton (2010) has been developed. It is a C++ program and its DSP Library is

easily turned into an external DSP Library (by using the FLI library).

The GUI of a few objects (Correlator, Splitter and Merger) needs some redesign. Although the
underlying algorithms (Model) are working well, the GUI needs some attention. More detail in
specific aspects of the GUI require further development in fine-tuning the GUI to the process
(adapting the View and the Controller to the Model). This will result in more precise results and more

possibilities.

The GUI should be extended with a ‘true’ three-dimensional view. This can be accomplished by
adding a third dimension (or z-axis) to the display. This creates the possibility of zooming and rotating
clusters in a scatter plot. Also an implementation of Oculus rift goggles, as an extra way of projection
of the data, would be an excellent option to have in this three-dimensional view>”. Although the CAPI
Library of LispWorks offers many classes, methods and functions for use, further 3D geometry
algorithms need to be developed for this future implementation®”.

In this version of CACEA4 there is still no possibility for saving - the state - of the program. Creating

persistent code with all states of the objects preserved is therefore not possible yet, although an

28 Data points can hide behind other data points: especially in larger data sets this kind of visual blocking can
occur rather easily. This makes it much harder - without a certain form of graphical rotation - to detect certain
constraints between these points.

29 There are certain pseudo 3 Dim techniques of graphical projection: Glyph projection. A pair of goggles with a
red and a green glass is used in order to create some visual (illusion) of depth in a still 2 dimensional plotting
window.

130

attempt is on its way*'"’.

One last point of attention should be applied to the precision used in CACE4: the internal LISP float-
type, used for doing all the arithmetic is in double-float precision, which gives a floating point format
with fifteen digits behind the point. On several occasions round-off error will be introduced. Future
plans to eliminate these round-off errors can be achieved by implementing a simulation of a new
upcoming standard as suggested by John Gustafson: UNUM, which stands for Universal Numbers.
The benefits are considerable in that it could mean the end of all sorts of round-off errors in, not only,

211

floating point computation™ . The disadvantage is that it needs to be coded in hardware to be really

effective, and therefore it will take some time before being implemented and widely available for use.

219 For now (May 2016) the version of CACE4 can save the objects to a (text) file. For now, only the Objects and
their positions can be retrieved, thus further work needs to be done.

2 The End of Error Unum Computing by John L. Gustafson is the book to read on the topic and implementation
of UNUM (Gustafson 2015).

131

Bibliography.

Adrian, Richard H., et al. 1987. The Oxford companion to the mind. Oxford, UK New York, USA:
The Oxford University Press. Encyclopedia.

Alpaydin, Ethem. 2010. Introduction to Machine Learning Second Edition. Edited by Thomas
Dietterich. 2 ed. 16 vols. Vol. 16, Adaptive Computation and Machine Learning. Cambridge,
Massachusetts, London, England: The MIT Press. Machine Learning, Informatics.

Ariza, Christopher. 2005. An Open Design for Computer-Aided Algorithmic Music Composition:
athenaCL. Boca Raton, Florida USA..: Dissertation.com. Music & Informatics.

Barbaud, Pierre. 1965. Initiation a la composition musicale automatique: Dunod, Paris 1966. Music &
Informatics.

Bergson, Henry. 1948. The creative mind. An introduction to Metaphysics. Translated by Mabelle L.
Andison, First Carol Publishing Group edition. New York, USA: Carol Publishing Group.
Philosophy.

Biittcher, Stefan, et al. 2010. Information Retrieval Implementing and Evaluating Search Engines.
Cambridge, Massachusetts, London, England: The MIT Press. Information Retrieval,
Informatics.

Carpenter, Gila, and Stephen Grossberg. 1987. "ART 2: self-organization of stable category
recognition codes for analog input patterns." Applied Optics 26 (23).

Cope, David. 1991. Computers and Musical Style. Oxford, UK: Oxford University Press. Music &
Informatics.

Cope, David. 2001. Virtual Music Computer Synthesis of Musical Style: MIT-press. Music &
Informatics.

Cope, David. 2005. Computer Models of Musical Creativity. Music & Informatics.

Dessain, Peter, and Henkjan Honing. 1992. Music, Mind and Machine. Studies in Computer Music,
Music Cognition and Artificial Intelligence. Amsterdam: Thesis Publishers. Informatics and
Music.

Floreano, Dario, and Claudio Mattiussi. 2008. Bio-Inspired Artificial Intelligence Theories, Methods,
and Technologies. Edited by Ronald C. Arkin. 16 vols, Intelligent Robotics and Autonomous
Agents. Cambridge, Massachusetts, London, England: The MIT Press. Al, Informatics and
Biology.

Ghezzi, Carlo, and Mehdi Jazayeri. 1982, 1987. Programming Language Concepts. 1 vols. New York,
Chichester, Bribane, Toronto, Singapore: John Wiley & Sons. Informatics.

Grant, M. J. 2001. Serial Music, Serial Aesthetics. Compositional Theory in Post-War Europe. Edited
by Arnold Whittall. 12 vols, Music in the Twentieth Century. Cambridge, U.K.: Cambridge

University Press. Music and Aesthetics.

132

Gustafson, John L. . 2015. The end of error. UNUM computing. Edited by Horst Simon, Chapman &
Hall/CRC Computational Science Series. Boca Raton, London & New York: CRC Press
Taylor & Francis Group. Informatics.

Heckl, Maria, et al. 1988, 1995. Dictionary of Science & Technology, The Wordsworth. Dictionary of
Science & Technology.

Helmholtz, Hermann 1885. On the sensations of Tone, as a Physiological basis for the Theory of
Music. Translated by Alexander J. Ellis. New York, USA: Dover Publications, INC. Music
and Physics. Original edition, 1885. Reprint, 1954 by Dover.

Keene, Sonya E. 1989. Object-Oriented Programming in Common Lisp, A Programmer's Guide to
CLOS. USA: Addison-Wesley. Informatics.

Lauwerier, Hans. 1987. Fractals, Meetkundige figuren in eindeloze herhaling. Amsterdam, The
Netherlands: Aramith Uitgevers Amsterdam. Informatics.

Lawless, Jo A., and Molly M. Miller. 1991. Understanding CLOS, The Common Lisp Object System:
Digital Press. Computer Science.

Loy, Gareth. 2006. Musimathics, the mathematical foundations of music, volume 1.2 vols. Vol. 1.
Cambridge, Massachusetts, London, Engeland: The MIT Press. Music, Mathematics and
Informatics.

Minsky, Marvin, et al. 1992. Understanding Music with Al: Perspectives on Music cognition.
Cambridge, Menlo Park, London: The AAAI Press/The MIT Press. Al, Cognition, Informatics
and Music.

Moore, F. Richard. 1990. Elements of computer music. London: Prentice-Hall. Music and Informatics.

Morbach, Bernhard. 2004. Die Musikwelt des Mittelalters. 2 vols. Vol. 1. Kassel, Basel, London, New
York, Prag: Birenreiter-Verlag Karl Votterle Gmbh & Co. KG, Kassel. Music History.

Nierhaus, Gerhard. 2009. Algorithmic Composition, Paradigms of Automated Music Generation. Wien
(Viena): Springer-Verlag. Algorithmic Composition, Music and Informatics.

Oppenheim, Alan V., and Alan S Willsky. 1983. Signals and Systems. Edited by Alan V. Oppenheim.
19 vols, Prentice-Hall Signal Processing series. London: Prentice-Hall International Inc.
Systems & Digital Signal Processing.

Perry, Marvin, et al. 1989. Western Civilization. Ideas, Politics & Society - Third edition. Boston,
USA: Houghton Mifflin Company. History.

Provost, Foster, and Tom Fawcett. 2013. Data Science for Business. Informatics, Big Data.

Reichardt, Jasia. 1971. Cybernetics, Art and Ideas. London: New York Graphic Society; First edition
(1971). Informatics, Cybernetics.

Risatti, Howard. 1975. New Music Vocabulary, A Guide to Notational Signs for Contemporary Music.

Urbana, Chiga, London: University of Illinois Press. Music Notation Theory.

133

Roads, Curtis. 1996. The computer music tutorial: The MIT Press. Computer Music, Music,
Mathematics and Informatics.

Rojas, Radl. 1996. Neural Networks a Systematic Introduction. Berlin Heidelberg New York:
Springer-Verlag. Al, Informatics.

Russell, Stuart, and Peter Norvig. 2012. Kiinstlicher Intelligenz. Ein moderner Ansatz, 3., aktualisierte
Auflage. Miinchen, Germany: Pearson Deutschland GmbH. AI, Informatics.

Schoenberg, Arnold 1978, 1911. Theory of Harmony. 1 vols: Belmont Music Publishers, University of
California Press. Music Theory.

Sevilla, Isidor von. 2008, 830. Die Enzyklodddie des Isidor von Sevilla. Translated by Dr. Lenelotte
Moller: Marixverlag. Encyclopedia. Original edition, Oxford Classical Library 1911.

Shimazaki, H., and S. Shinomoto. 2007. "A method for selecting the bin size of a time histogram."
Neural Computing 19 (6):1503 - 1527.

Steele, Guy L. 1990. Common Lisp The Language (second edition). International edition: Digital
Press. Informatics.

Stone, Kurt. 1980. Music Notation in the Twentieth Century. A practical Guidebook. New York,
London: W.W. Norton & company. Music Notation Theory.

Taube, Heinrich K. 2004. Notes from the Metalevel, Introduction to Algorithmic Music Composition.
Edited by Marc Leman. 6 vols, Studies on New Music Research. London UK.: Taylor &
Francis Group. Music & Informatics.

Temperley, David. 2007. Music and Probability. Cambridge, Massachusets London, England: The
MIT Press. Music & Informatics.

Waithe, Mary Ellen 1987. Ancient women philosophers. 4 vols. Vol. 1: Martinus Nijhoff Publishers,
Dordrecht The Netherlands. Philosophy.

Walther, Elisabeth. 2000. "Max Bense's Informational and Semiotical Aesthetics."

http://www .stuttgarter-schule.de/bense.html.

Wasserman, Philip D. . 1989. Neural Computing, Theory and Practice. New York: VNR - Van
Nostrand Reinhold. Informatics.

Watson, Mark. 1991. Common Lisp Modules. Artificial Intelligence in the Era of Neural Networks and
Chaos Theory. New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong and
Barcelona: Springer-Verlag. Informatics.

Winston, Patrick Henry. 1984. Artificial Intelligence, second edition.: Addison-Wesley Publising
Company. Al + Informatics.

Xenakis, Iannis. 1971. Formalized Music. Bloomington, London: Indiana University Press. Music &
Informatics.

Zwicky, Fritz. 1969. Discovery, Invention, research -Through the Morphological Approach.: The
Macmillian Company. Philosophy.

134

Appendix 1.1 CACE4 work session example 1.

-Means object (left top position — dark green)

A work session with the CACE4 k

wesborsy
worssaibo-ul
uonefesio0
vonemop
uepow
veow
xew-uw
ewiou

Aerdsip uonewiopu eonsels

P | puo | sKeAX | auoN

eidsip 01 Sxe/puB 10 90y 1905

<1£01Z9 satou>
so10N
0 :Pejunod sisquinN

o :uomsod A
05 :uomsodx

'L Hoye) wooz

‘sanjeA main :solydes9 AIoisiy Uooe Jeusioju|

ssvezrss 3 @
o e w2
sty wuse @
uwess sess 2
s9966°322 sz
xewon e @
ssor-222 s 6tebosy =6
Stesron st a

v owst s EeuI=g
vaverseer o2 910 ues
usonsse ST STionpoid=
fome'e W9 Voemepng
o911 amest @
6EEZZNL S8TT626T O]
ese'on aeuya w veRw=y
secvas s essw o uesw=g
o680 a7 Gewuw=g
Ts02°c901 WS 3 jeunou= |
zess 7 w2 L

sz o 9
saanson smren s
‘e0recss e
v sussw €
omeos s 2
o681 wusew 1

andino andul xepul

Aerdsiq feopieuny ssuiojul

oo

B puo | SxemX | uoN

wesboisy
uossasBas-uy

uonepaLI0>

uepow

fedsp uonewon

Hedsip 0 sixelput 10 990 1995

<590129

0 :powno siaquiny
2z ezsiond
o :uomsod &
05 uomsodx

0L Howej wooz

SanjeA malA 1soWydeID AOISIY UOROR Jauoju|

sat0u>

ssa10N

-

o oz

0

8901 pu3

0oL ueis

Hunyo 91219p 0 [02-1] 871 dwnr xepurEIS

) 3 W
e oL s sz 2
aoern aoenn 2z

u er 226t 226t %2
" ssTs9- 81789 2

m 65t st ”
s 950t osoan 1

o T w2 2
z szt szt w

6 o P v @
st st o

e o so0°e6t so0°ge1 o
et et o

6 o o ot

‘ m 1 66182 st
sz sz "

° ’ sewzs- sewzs- o
e e @

s 9 ete'stt ete'stT n
P oot o

v s To8'se Te8°se 6
o seew seew 2

€ ez eet ez eet :
€ uvee uvee 9

z sy oty s
z ez ez v

v . e e €
s s 2

oo oec- T

1du 21900 anding andu xepul

Aeidsiq feououwiny Joreindiue

[0)

Aeidsiq [eaydeso awioju

owwebor | seaun

moug
Ao 1ndu m

< 570120 -aweu-ssa0ic

ind apeno |
K015y uonde sorenen
& Reza0 266°64T
Teuse e ez
w S92660°8S. 0571z
w299 e
L Tore"seT sz
setees v aoen
u oty s
s sstE-
L Tose°cos st
s L sso e
o sesere’ss T
2220 0z
6 edeeese o
sseszesa 688t
o sco0vt so9cer
'sost woest
s9260°263 et
e 28801°%6 ¥E6°T02
scosoes s
© S26vE°SST. SE8°2s-
serrezer e
s o asi
essisyw o
005z L 962 Te'se
oS et ez
@ [T 200225 nzest
esico9 uvee
0L oz suven orsy
2usarer ez
o0st 529 L S2SS "8 bl
] sz
wnwey unwu xepul s vauree- T
Swawap Buyess anding andul xepul

1ndINQ feopsown Jojendiuen

@0

feydsiq jeoiudess Jousoju)

sy | puo | smeAlX | ouon

<650129 sai0u>
isa10N

0 :pawnoo sisquiny
z wuspxd

oc uowsod &

05 uomsodx

0L e wooz

sanjen main :soydesn

Auowsyy uopoe Jausioju

3
&
ANmenereafdNNIASNSARANTS!

andul xepu

-4

w

@ ox . P

Aeidsiq jeoidess Jauioju

1du) sowdesg soreindiueny

- [eAaL12Y UOREWIOJU] JISTIN ' BUIUES USRI

135

Example of a work session with the CACE4 ART2 Neural Network object (top left). The CACE4

Informer object shows the output of the ART Neural Network (yellow view).

Appendix 1.2 CACE4 work session example 2.

su ooy s o
pe1s 010 s 3083 40 1 N o) ccont om0 | e | s - 1
. resnso‘ou 25 surausa e v ol oo e i oo
S G meom
iy =aumeubis awy 1095 01 puas. se68'TS. TET6TT st
S SULL | 150q0 91005 100/01d 9Ul 01 €1EP XLAEW (1€ PUOS. g %69)
50 =pavds wesboisy <£80129 sat0u > ikt o 4
0zL = N ND oduy Suo se ones DL 5Uq jo Iunowe ‘Xew ‘weiBolsi = 6 orssaba-u 56 serer a

SL'0 = @ouesloL 0L =wmuend P ¥ - o
sBumas [aIN SWiXaL € 0) ‘E18p KB 18 nES [— Loneraiion 660 L 6560 i
o ounensquny. s a2 ow
e | ansmn T (5 umeocs) s g e — — B

ranemns s —————) . :
P P — TR sums s o e s v : e @ o il
oc| oo o o
e s :
o5 onseax e sw
s ek
soveueor o a1

.

o - seszv L T
e e Koo o o o
Aeidsiq [eUBWIN sawop

vaaled
vo

K
ccococooooco0o0o0

sonz s pozeno xapu
(sunjod ajgenos fe) - Aeidsip n-oid

s s Poos BN SO NOLLVHNG'¥ ek
B oncs B anes B anes B an<o B ames B soswnouwnay B Auoorve B os-vovous-z B SOININLLvIS-L

S1U3A2 OPNYI|EASTIN Ol WeaLls RSN SYeISUBIL
SL0Z:LL:0E-9:65:91 -J0iSUBIL [QIN-IOTeISURIL ese

R = SooR
89 ET %z = Ksoisiy uonoe solendie
e B L f—
™
= i — -
= N —
00005 92v e 2 Si] S B "
€T0e2° 2 98- 2 2 sy B
0u8TT9. 962°sT- 2 o] - B &
= e | —
= e
=]] A el e & st 2n 0L [0L - 21 sa0Ba1ea 1ndno Jo Jequinn
=] o = @u e —
: ; =) (e
e W & @ wr o« —
oeen wn - o0z e T s “@NjeA IN0JO JOIIN 00
P Fr i i D
= e s =
& = B . o =
EE e
0ozt e st o g =y e
] N = e
uneyse vz & € B & A
& =) . ol N
2 . wn B -
#6268°€9 s o v » -
st g | 5 o s b | -
e B = I -
- A B
=4 e
o] B . wa e -
] = :
i ma, o o e =
=2 T . = =
e s | E=m B
anding andul oxepul ° & & I
e i =
7] B
oF =] B
e B
v s e oz i
. s e
. = B
. g B
090L pu3 z 657EE s R
. = E=)
= . = = |
& =4
Hunyd 213f9p IO [0Z-1]92is dwinr xapul LIS 220 vz T
e o e
Keydsiq (eduswny Joreindiveiy e ¥

136

Appendix 1.3 Strategy Scope.

'Scope', showing both the Project and the Process window with the strategy displayed as a chain of

connected CACE4 objects.

3:/T-9€:2T:T-421025-4030 NG IUDN HIVW STOZ:8:LT-7T QT T-421035-J030NGIUDN HIVW

STQZ:8:LT-€5:2:T-491025-4030 NG 1UDN

i
uey
HLVW

ST@Z:8:LT-EE:8G !

@

-49105- 4030

SdVLS-40301Nd1U0N IAILS ALYIONd HLVW

IST@Z:8:£T-25:8:T-(92uDqun3s1g A-X) 42GUNIS1Q-JOIDINGIUDN HIVW

ST@Z:8:/1-0:@:T-9A31S K342d0.d 10213513035 :SdVLS-4030INGIUDN JAIIS AL¥IO¥d

ST0Z:8:4T-TT:6:T-4auUNid-J030INGIUON VIVO

1PWIAOW UD1UMOJG-J03DIBUID Y3DN
ST0Z:8:2T-2p:2:T-WDJBOIP UO1IDIUN318-40309U3) UIDR

Ep|
S102:8:41-%1:£5:0-PN01) WOPUDY-J03DIUID UION
ST07:8: LT~ b5 0-SIUDWAAOI UDLUMOUG-U0IDIDURD UIDK

| wpoi/yowun |
a18180

[

(108UL00510]
| 108UU0D

[

J
J
J
UP3-9A0N J

100/G0-X0q U0 UOROE 390jeS

X0q 31008 PPY J
X0q J0S$8201d PPY |

$100/q0-X0q 129[0id Mo 81EAID

N B B ®aQ
dieH juud se|y josfog

GIUDW HLWW

ST02:8:£1-02:95:0-421035-40301nG

STQZ:8:LT-T2:55:@-42UNJd-JOFDINGTUDK VIVD

108(01d - ¥3OVO LK

=
JOMEISUBLL IQIN |

100[G0-X0q JOJBISUBIL B PPV

1610 | oes. e

Je[eos | 10 e

“H'I'W/BUIUIRST BUIYORI]

Y | s, 892

100[qo-x0q JoleINdIUBN & PRV 1q. :997

. €92
salld J

Y | @S, e

sio10emy |y

SIUBWIGAOW UBIUMOIE | es.ise

190/qo-x0q JoweioUeD B ppY VD €S2

G102:8:21-02:#5:0-410S5820.d J03l0id

w & B & e
do, 892
dioH wud So|y 10SS8001d mw0<0

.

0bnyzluon (W E # & o 1 -

L0'95°PO0A ¥3OVD B

137

Appendix 1.4 STAPS GUI.

One of the used CACE4 STAPS Manipulator object GUI. It Shows the original input in blue, and the

newly calculated output in light-green.

02

g
oz O+
- 60
9
e,
o 9p
mE 0
ez
€
-,
HE 5

o215 JuswBoeg Mmous

00s0°0 00s0°0-
00s0°0 00s0°0-
00s0°0 00s0°0-
00100 04100~
0aoe 0aoe-
000+ 000’k
000+ 000’k
000's 000°s-
0000 0000
0000 0000

ey Buppeeids Ui Buipeaids

IdING Mau S1e1eUBD || SeedoId S1EINJED || Indul 10ld

:uopendiuew Auedoid [eansnEIs Jo 0dAl 100j0S

weiBoIsIH - 01
uoissaibey “ur - 6
() veweads - g

() vosieaq - £

suQo XeN | pi

uoneireq pPIs - 9
@OUBLEA - G Jednnw soueLEA b

ueIpa -
e Sjuswsaje "ou Jad uesp 4

wnwixep - g

wwiUiN - |

senjen Auadoig [EONSIEIS POIEINOED

senjen Aadosd [eansnels

sy || puD || sxe AX

<8L212D sejou >

0 :Palunoo siaquiny .

05| :uomsod x

000+

senjeA moIn :solydesn

BuoN

:Aeydsip 01 spxe/pub Jo adA) 190j05

<89/802£2

« .ST02:8:22-26:41:22-9A915 K3J200.d 10913513035 :SVIS-JOIDINAIION IAILS ALYIAONd HLVW. IND-

« IATTS-ALYIAONA-HLYW-TIVD: :3OWNVA-ATIVD># " (ITUINID-E-WILSAS-GIUOAX :A01dS1Q 93DVD. i86S

<80/80E2 .ST02:8:22-26:T:22-9A915 K3Jadoud 1091351303 :§
SBJON ¢ dVLS-JOIOINGIUON IAITS ALYIAOWd HLVW. IND-IAIIS-ALYIAONd-HLYW-DVD: :I9NVA-ATIND># .(IN9-
« 9A915-A342d0d-HIVW-TI¥) 9DUDISU1) ITHINID-AI0G1103-doux1d-K01dS103. 2149uaB13D YTV 1965

<BI/B0LE2 .STO2:8:22-26:L1:22-9A91S A3.2d0.d 10913513035 ISAVLS-4OIDINAIUON IATIS AL¥IO

“¥d HIVW. IN9-IAIIS-ALYIONd-HLVN-IVD: :30WNVA-ATIDVI># .ANGINO MaU PAIOINDT0) :9IIWD. 1995

€ :ezs jpxd

06| uomsod &

“.(62952T) = Japio Ajuadoud QT = 2215 . . INOLLIINNOD-HOU4-LNd1NO-OISATYNY-AV1dSIA. 1595

889T = 9215 . . INOLLIINNOD-WOY4-L1dLN0-AV1dSIO. F€95
.0 = 9215, 159139000 343 YIW LNAINO MIN ILVHINID. 295
Q09T = 9215 ITYEIZ6¥IE"IE2T2I-QI-C80.. ..iNOLLIINNOD-HO¥4-LNdLNO-Q¥IY. TS

.91 = 2215
<BI/80262 .STO2i8:22-26:21:22-9A91S K3uadoud 1091

LLINNOD-HOY4- LGN -AV1dST0. 1095
035 :Sd¥LS-J030INA1UON FAITS ALYIAO

¥ ¥d HLVW. TND-JAITS-AL¥IAONd-HLWN- 2D I9WVG-ATIND># .ANGIN0 WaU PIOLNDIE 9IND.. 1655

:40}08) WO0Z

“.(62952T1) = Japio A3iadoud QT = 3215 . . INOLLIINNOD-HO¥4-LNd1NO-OISATYNY-AV1dSTA. :8SS

uone|nojed seedoid Jo JepiQ

weiBoIsIH - Ok [
uorsseioy seaur - 6

UORE[8L100 JOPIO-3UB UBWIRSTS - §

UORE|S1I00 JUSIOW-}ONPOI :UoSIead - £ [

uoneineq pIEpUES - 9)
souuE - S 3

veIpaN - 7

ues| - §
enjen wnwixe - Z 3
aneA wnwiuiy - | 13

:05N 0} S8|MBA0IY BIOW IO BUO J0818S
sopiedoid [eonsHEIS

Kiois1y uopor anss-Asdoid-Hiv

922 et 2
282 '80€ 1
S22 60E ez
262 2QsyT ar (34
vt 062 14
'90¢. Tz A
"W €22 9T

€52 SEE ST

T709°00F " L2€ k4

TeE 0ze. 119

882 e n

982 "S5 n
(743 L0t et

rid 692 6
6.2 562 g

262 "62€ e
762 19°242 9

8. VEE S

062 "962 v
762 682 €
razd €0F z
6L a2z T

andino ndu) xopu|

Ae|dsiq [eouaWNN - (SAVLS) 8ASIS Aledoid [2onsiEIS HLIVIN

5102:8:22-26+L }:22-0nels Auadaid [BONSHEIS :SAVLS-OIEINdIUEN IAIIS ALHIJOHd HIVIN

Keydsiq [eoiydein - (SJVLS) erels Auedoid [eonsHelS HIYIN

138

Appendix 1.5 Informer GUI.

The display of the Informer GUI attached to the Merge object.

! ISUIQ JO JuUNOWe "Xew ‘weiBosIy = 6
uoissaibey Jeaul| = g

(s1 uBULESdS) UONHE[S.IOD JBPIO HUBL
(1 uosieay) JueIOYEOD LUOHEISLIOD JUBWOW-}oNPOoId = /.

| wesboisly

| ey || pup || sixe A/ || @UON |

:Ae|dsip 03 sixe/pub jo 9dk) 100jeS

< 890229 selou >
s9l0N

| uojssasbas-uy |
UonE[e1I0d
uoneinap

[soueyen |

Xew-uiw

| [ewiou |

Aeidsip uonew.oju; [2oNSHEIS

0 :pejunoo siequiny
o

meipay | solydein meipay
U_ 10215 joxid
! :uopsod A
! :uomysod x
a0 e

senjen main :solydeID

773 21 2
126 (734 o
565 1] 61
s o 8T
€96 589 a
7601 2051 ot
262 €8 st
29 141 7T
<EBGT6262 .STOZ:8:6-25:96:9T4 86 sst £
€ IWIU-UAUIOJUT, IND-¥INYOINI-IIVD? IDVNIV-ATIIVD># .'PIIIOLC UDDW € O3 YIWYOINI I0INI0I IV, 122 e 997 z
L6268 = @ [133NNO)-HOY- LNALN0-AY 1dSIA. 1612 €22 08]
.0E€8 = TLIINNOD-HOYJ-LNINI-AV1dSIA.. 8T2 % o o
LOEE8 = 715 SIL6TIBHIE" NOLL): oy 625 6
.0E€8 = . *NOLLDINNOD-HOY4- LNNT-AV1dSTQ..
9167898 2001 4 o
€ \-J3UIOJUT. IND-YINYOINI-IIVD: 1 IOVNIVG-ATIND># . "PIAIOLY Xou- 9L i
.z =2 2 o
-0EE8 = a4 o1z
LOEE8 = 715 SIL6TIBHIE" 80 . INOLLY: - 296
LOEE8 = 9215 . . INOTLIINNOD-HOY4- LNGNT-AY1dSTO.
<ERETB2EZ . 81 19€: s =
€ IWIU-UAUIOJUT, IND-YIWYOINI-IIVD? INNIVG-ATIND># ."PIIIOLE UOIW IE OJU1 YIWYOINI 9IOUNILOI 1¥IIND. * 5 or
L6268 = 9215 . .:NOLLIINNOD-HOY4- LNALNO-AVIdSIA.. . sz | 266 |
AKi01s1y uooE JouLIo| Inding induj ixepu|

Aeidsiq [eouswnN sowiou]

G102:8:6-25:96:9 h-JOMBIA-1OULIOJ]|

Aeydsiq [eoydesn Jewoyu|

139

Appendix 2.1 CACE4 Generators: UML (2.x) Class Diagram.

([zlnreoquid ‘preoquid ‘[T 119940 19810)IN9-81095-30V/0-MOUS—<UOHIUNP>
([T]o0UeISU] :JS)NUBWL-|WXU-BI0DS-B)feLLI~«UDIUN>

(eoueIsuU; preoquid) wsuiony-sonanaO-cuaouny

(Thsu

Sixa) [TIBuLS URuaI)a-IXal-3 LM ~<UORoUN» (sBreyu 1sarp
([rJoourrsur ‘preoquId)aly-1Xor-QyI~«uonauny>

(SBIe1U 1501 '90Ue1SU)a0UEISUFOZ BIIUI-<pOYjaL

(sBreyur 1sarp

(SBIBIU 1501 ‘9UBISUDOOUBISUOZIBAIU-POIOU» T = [Thu

:adAr-erewoine-

QEINTWYE g

(SDIe)ul 1SIP‘90URISU)OIURISUFDZI[ENIUI<POLIUD

IANIAIXOLAN = [T]yred-2ip uip-ali-1x0)/-
SSOYHO-SIXV-0Z-MOHS, = [T1/eUd :3dAL-AV1dSIa-AX-(8O-

002 = [Thui :sodx- 2 = [thu re-
1 = [thu :ez1sjxid- Zre = [Thul xewA-

Iu = [T]ueajooq :aimoid-melpal- 216 = [Thul xewx-
T = [thu u- 002 = [Thur :pew-

000€ = [Thur :ixew- 0T = [T]reoy :wooz-

{Auopeai} SHOLVINOTVO HLYW J0VD, = [TJeyd :3dAL-CH0-
{enbiun *juopeal ‘pi} (QI-r0-anbiun-axew) = [tluonouny :ql-ra0-
ly-1xa), = [Theyd 'INVN-CH0-

= [Thur sew-uers-
(0002 T). Aewe- xew) = [0)Aeire -
{enbuun} ((000z 1), Aeue- xew) = [lAewe -

0T = [Tlieol :wooz-
00€ = [Thui :sodA-

00T = [Tt :s0dA-

U = feyd Q- INIHVd-
SIXV-QZ-MOHS, =

{Auopeai} SHOLYINDTVO HLYW JOVD, = [THeyd :3dAL-80-

IND-107e13U89-T 11430V

(5107210U8D-yIOVO-FOVHIOVA-AIFOVO Wou)
IOVMHOV-AIFOVD | 3I4-Ixa}

{enbun ‘p} (I-caO-enbiun-axew) = [Tluonouny :ar-cE0-
{AluOpeai} BIRWOITE, = 124D ‘FWVN-CE0-

([T]ooURISUI 1§j2S)NUBLL-IPILI-2J09S-3HeW~«<UOHIUN - «sse>» (SI01IAUBD-FIOVO-TOVHOVA-AIFOVO ENWE
([T]eoueISUI :}(aS)NUBW-YBIEI-8I00S-BEW~<UOIIOUNp> {Pi U = [Theyo Qr-SS3D0Ud- Su.EEmEOib\svmu.m_m mwwwxu<m.>_mu<u : gewoyne
- 00T = [Thul :SOd-A-CEO-XO8-
IAOW, = [T}y :uonoe-uonng-pajoefes- 00T = [T]u! : arss300dd-
1= [1]ueajooq :d-pifeA-suonng-urelurew- {enbuwn *Ajuopeas ‘pi} 0 = [T}7eY2 :I-rEO-XOG-
1aynq: = [tJedA-Aeidsip- {enbun} (), = E_m 1NdLNO-r80~ () ssejosadns sy
(O.= = [« "Thut :dON- pue £gO Snnajed «puig»
Iu = [T]es00s-o1SNW- o ;EOEQS [thur :dIN- 00— - e arssIoUd
u = [Thawn- {Aluopeai} SYOLVYINID FI4 30V, = [T}eYd :3dAL-r80- Ofeidsip~cuonaungs il Em>m, :wwﬁﬂw
= [T]BuLss :21005-UONNG-PAIIAIRS- INS-101e10UBB-01|4-30YD, = [T1BULS :TNVYN-(80- 1pUq ey |
= [1]Buws :apn-feulbuo- {anbun ‘Aluopeas ‘pi} (a-rgo-anbiun-aseww) = [TJuonauny :ai-rgo- .
= [114op ojoo-feuibio- (S107219U3D-y IOVD-FOVHIOV-AIZOVD Woly) ~UoITeILBWNI0p SyIoMdST] 835 ‘S|ie1ap oneluaWaldLI (e o} (sBreyun 15215 ‘[T]URISUl BOUBISU)SIURISUIZIIILI-POYIaL»
80BLIBIUI-BULIP:IdY | IND-I0IRIBUSB-3113-30YO 20BLBIUI-OUYBP:IdYD e
fonbiun *Auopea: 'pi} ju = [Tleyo taoend. Sl o «oieun ~ yod-main dewid-
{enbiun *Auopea: ‘pi} 0 = [TlreyYo :gl-rEO-XOT- T 1 [« "ThSNl :Z1NdLNO-YNIMT-
fenbiun} (), = [thsll :1nd LNO-C8O- = [o]sll :ZLNANIINIT-
0 = [o]ur :dON- —— = [T}y :3IWVYN-SSF00Ud-
(RuoPel 7= b T SN arcao-xog 1Pl U = [Ty ‘Q-SSIO0Ud-
{Auopeal} STY00S 30V, = [THeyd :3dAL-CEO- arraoxoa 00T = Ul :SOd-A-(80-X08-
.109[G0-y3OV0., = [1]BUMIS :JNVN-CEO- 00T = Ul :SOd-X-LEO-XO8-
{enbwn ‘Auopeas ‘pi} (aI-rgo-enbiun-axew) = [tluonoun; :ai-c80-| T {anbun .>_=wumm. .w_uuu J:_F:u ‘arreo-xos-
nbwn} (), = : -CHO-
(SI01213UBD-YIOVO-FOVHOV-AIFOVO Wow) arra0-X08- T enbiun} (), :wﬁ wﬂn.%% mm__”ﬂ‘
30ep3UI-BULIP YD * IND-31098-3DVD {Auopeai} 0 = [Thu :dIN-
SSSE {AlUOPEa} SHOLVHINIO HLYW 30VO, = [Teuo :3dAL-CEO-
. alca0-X0g- ([t]preoquid :preoquid ‘[11981go :198/G0)IND-10SS820IG-FOYI-MOYS~<UORIUNS> : LINS-sioesausb-H1YW-30VD. = [T1Bums :INVYN-r80-
T T T {enbiun 'Auopea: 'pi} (QI-rg0-enbiun-axew) = [tjuonouny :ql-cE0-
QrEO-X0s SAOW, = [T1reyo ‘uonoe-LONNG-patoafaS- Essmﬁm 30VO-FOVHOV-AIZOVO Woy)
N 7 1 = [Tlueajooq :d-pifeA-suonng-ureluew- epialuy VO © HIVW-30VD
«sselon
(sBre 15913)In9-193l01d-30 YO Moys-«uogouny (1a1101u02-1n0Ael-Buptoop- o 1de0) = [7]uonoun; 19[j0Ru0o-
- = [Thur :arAV1dSIa-103rodd- {Auopeai}
IAOW, = [TIeyD uonJe-uonng-palosjes- = [Theyd :IWVN-SSI00xd-
1= [1]ueajooq :d-pifeA-suonng-urelurew- Iu, = [tlreys :aI-SS3008d- FSS300dd- | T T
A, = [T]6uws :apn-feurbuo- *) C,m Emm__ 2LNdLNO-INIT al-r80-xo8
{Auopea: ‘pi} YoB(Q: = [T}Ae> oj0o-feuibpo- | {AluOPER] . = [Thsi :ZLNdNISINIT Tl Preoqud 199100)1991a0-GOvo-IPe—<Uonoun
u = [juesjooq :paBILOL- |] fonbn *Auopea: 'pit 0 = [1euo :a-ca0-X08 n%m _Emﬁzan ﬁmse_mmw% wo«o msmzm.zéazu_sw
(19110:1u00-1n0Ae|-BupfoOp-a3ew:Ided) = [T]uonouny ajionuod- [~ 1 {enbwn} (), = [Thsn :Lnd1NO-r80- ([thur :preoquid 1981G0)1231G0- IOVD-SA0LI~<IONAUNy>

{enbuun *Ajuopea: pj 0 = [Theyo :ai-ra0-x08-

{anbun} (), = [Ths) :Lnd1NO-8O-

T = [Thut :dON-

__ {Auopeai} T = [Thur :dIN-

{Auopea} §103r0ud 30VO, = [Theyd :3dAL-C80-
199[00-¥30VD., = [T]Buis :IWVYN-r80-

fenbiun *Auopea: ‘pi} (qI-cg0-enbiun-ayew) = [juoioun; aI-Cg0-

T = [Thul :dON-

= [Thui “dIN- [a1C80-XO8-

{Auopeal} SHOSSIO0Ud 30V, = [Theyd :3dAL-CE0-
J93IG0-y 3OV, = [T]BunS :INYN-CEO-
{onbiun *Auopea: 'pi} (aI-CE0-enbiun-axew) = [tJuogoun; qI-CE0-

(SI01212UBD-YIOVO-FOVMOVA-AIZOVD Woiy)
80BLIBIUI-BULRP::IdOYD * IND-108[01d-30VD
«sse[o»

ﬁa.sm:mo ¥IOVO-IOVHIOVL-AIZOVD wouy)
Iqo-preoquy i d-30VD
«ssejo»

[anbiun}

([tlpreoquid :preoquid ‘[T 108lq0
([thur :A reuondo % ‘[t]ui :x reuondo ‘[rjpreoquid ;preoquid ‘[T]eourIsul :19algo)qo-preoqt)
([xhur :A ‘[t x ‘[rlpreogquid quic- {fenbiun}

([tlpseoquid :preoquid ‘(11195100 :1901q0)UONBLLO>-FOVD-31alaP~—<UORIUN>

-

Q-MOGNIM-AV1dSIa-

{enbun}

([x]ut :preoguid '1931q0)s1081g0-PrROQUIG-TEa|o~<wiOnAUN >
([thu! :preoquid _umio:oma?mu(u ma,mu.éo:uces

([thur :A-i0sin2 ‘[T]ur :x-10S10 ‘3oURISUI 1193l
([thur = reuondor ‘[Tl 10K EE X -.agc_&aﬁue mv_me.éc:u%.:
([thoalgo-1001
([Thu uBioy “[Thul uapm “[Ehul 204 “{rloued :ox ‘[Tloued ‘oued ‘[rloued ‘dB)lqo-preoqUIc-108-MEIp—«ioloNy>
(B2l ISaIp ‘90UBISUI BOURISUYaOURISUFAZIRIIUI-<POYIEUD

1 = [Thut :Bejjsiy-saInld-N9-X0g-
u = [Thur ;ered-adArino-
wared-go: = [Thu wared-rg0-
ndiN0-198uu09: = [Tt ndino-108uL0d-
= [Thur andur1pauuos-
an: = [Thut e
J01091X3): = [Thul 110j02}Xa}-
=t

X 10j02: = [T} 2i0j0d-
u = [Thu :fqo-01108uu0d- wbiay: = [Thur ybiay-

= [Thur go-woiytoauuoo- |

= [T]uesjooq :pa1deuu0d-
= [Thsll :2LNdLNO-MNIT-
0. = [ThSI ZLNdNISINIT

{enbiun} (), = [thsi :1ndLNO-r80-

= [Thu! :dON-

T = [Thu diN-

{Auopealt $153r8O0MOYYY FOVO, = [THeyd :IdAL-r80-
193[G0-¥30VD, = [T]BuMS :INVN-CE0-

{enbuun ‘Auopea ‘pi} (aI-cgo-enbun-axew) = [tjuonouny :ai-c80-

«@oepalp

[Thut yipw-

{910 = [THeU> :AHMOANIM AVTASIA-

T = [Thut :dON-

{Auopeai} T = [Thut :dIN-

{Aluopeai} 5103r80X08 3OV, = [T}eYd :3dAL-CH0-
99140730V T]BuLIs :INVN-r80-

{enbiun “Auopea: ‘pi} (QI-CEC-enbiun-axew) = [Tjuonoun) :aI-rE0-

«ageyalp

140

Appendix 2.2 CACE4 Manipulators, #1 of a UML (2.x) Class Diagram

([rinreoquid preoquid “[rjeoueisu d-
(frhieyo :sinojea™youym [T]Buins -aui-mopum ‘[rleaueisu v
(IrJpreoquid
([Tjooumisur 24

([xhut A ‘{rhur X [r]pmoquid
([xhur by ‘[o ‘e :A [T x ‘[rJeouersul 129/go ‘[rpreoquid

— [Thul :0dAK-InojospUNOIBYIRG-AeIdSIp-AX-
0 = [Tl :1depe-A-Aeidsip-Ax-
0 = [t depe-x-Aeidsip-Ax-
008¢ = [Thur :@zis-Aedsip-Ax-

([tlpoqud proqu {[rloousisur Tovo
([Tlreyo :sninapea yoiym ‘[T]BULIS ‘apn-mopuim '[Tjeoueisu v
(aoue)sur :109igo feuondoy '[t]preoquid dt h
([t]oouersur dr

(ur A 2w x “[tjooueisur
((rhur w6y “[thur yipw ‘(T :A “[Thr :x (Tjeoueisut 30300 ‘[Tjpreoquid
(SR 15313 ‘[T]OURISU 2OURISUSOURISUFSZIEINUI-POYISD

" = sanu-dewnad-
1 = [T]uod-SOWdeIB :feuiblo-dew
1u = [TJuod-Soludeib ‘dewx

00T = i 'SOd"4-TE0-XOF"
00T = 1 ‘SO X T XO8

{onbun “Auopeas ‘i 0 = [Theyo ‘ai-tEOXO8-
fanbiun} (), = [Thsh .

S:oumw.: = [Thut dIN-
{fuopeal} SHOLVINAINVIN IAIIS™ALYIONd HLVIN 30VO, = [1leyd :3dAL-CE0-
1031GO-4IOVD, = [T]BUIS “TWYN-CEO-
{enbiun *Auopea: ‘pi} (QI-gO-anblun-axew) = [rluonauny ql-r80-

([tlpreoquid :preoquid ‘[T jooueisur -FOVIrMoy!

([rjpreoquid

(rjoreoquid

(e oy [ehs (e [x [rlooueisu 39300 {rlproqud
([TJo0umISU 20UBISUNOIBINGLE N LYC-ioNEITof:

(sBreyul isary ‘[TJoour)sul :8ouRISUIIURISUKZIfeN)

0= [rhu opuryreur

0 = sapnidewad:

u = [Tluod-soydesb :dewxid-
=L Zindino -

00T = Ul :SOd-X-(H0-XO8-
{anbun *Auopea: ‘pi} 0 = [Theyd al-c80-X08"

{anbiun} (), = [Thsll :1NdLNO-CEO/-

T = [“Thul :dON-

{fjuopeai} T = [Thut :dIN-

{Auopeail SHOLVININYIW V.1va 30V, = [T}eyd :3dAL-r80-
199100530V, = [T]BULNS TWYN-CS0-

{enbiun *Aluopeas “pit (@I-cgo-enbiun-aew) = [Tluonoun;

£80-

(eI T30VO SOV N0 o)

G SOvD 3900V D o)

X
Ax-
X
hxe
X
SIXY-0ZMOHS, = [TIeyo :3dA1-Reldsip-Ax-
W= E:mmsg PUNOIBYORG-AaId-aSN-

= [1lreoy uojoej-wooz-

Iu = [thur :adAr-inojoopunoibyoeg-Aefds:

= ol ZLndNEINT-
1= (T2 ‘JWVN-SS300Md-

fonbiun ‘Auopea: 1 0 = [T} QI-CE0XO8-
orown ()

{Auopeail T = [Thu :diN-
{Auopeai} mz_ubiz.&z(ﬁ 1v"30V0, = [1}eYd :3dAL-CE0-
.Ino-om| 30V, = [T1Bus :FIWVYN-E0-

o ' cssaon DL T e ks o A e
T 7 P’ (sioreNdiveN-y30VO-IDVHOVd-AIZOVD Wol)
) cssaion
E o
T LA T T
(tJpreoqud preoquid (r}i2310 :192130)in0-0S5330- 3OV MOl <UL
3non.= E..m:u UOI9E-UOTING-P318jas-
T

oo e oo v 1) = (rluonouny aloiod-

= [Thul :QFAV1dSIA-103rodd-

ﬁ 1Ry :INYN-SSIO0Ud-

= [Thoo :01-$53008d-
([Thur preoqud ‘TalG0/o3IG0-30VO-IPa~<UOUTp
: inEety (g :preoqud 1o91qo)algo-30V> SlleUBI-cLoRouN
E : fobun g1 0= 140 0G0 40 oo sk
NeiNoae | arcgoxos: ([x]ui preoquid 109lq0)s1091q0-pre0quIc-alo—<uonoun}
= = [Thur o (iThur preoquid “19lqonosldo-30V0-210lOp~<LOOUN
- Faovo, = T , (frhun #4053 ‘[Tl x-05ina ‘aouelsu) 199i00-1991)d-1981q0-prE0qUIC-12A0 IdE9-<pOuTB
~ 0fepdsp~cuopouny> {dvoPeo) su0SS300uS T0V0. o ool ™ oo [l o o pmonofo s o oty
- . o art o 190100-109) ‘PIEOGUIC)SPUNOGHIO0IG0-10B:-BIL-UOROUN}»

A -Fgo-onbIn o) = ;

Ty —————T——rY {enbien{ &uopeR1ipik (OFrEC-SUIFSIPLE) = [ENONIN drCE0" ([ehun By “[xTiur ppmw “[Thur 0K “[rloued :ox « ed oued [TJoued ‘d5)iqo-pIeoquUIC-1981-MBI—«LoNoUN}>
O et sty ! 104 (50121595 30VOTOVIOVA-NFOVO o) (SBrmyul 15317 'SOURISU 2OUEISUJROUEISUL- B2 PO
coie Iqo-pivoq -
e 1 = [ThUL BRI ISI-SOINIOIHND 08
= [Th ored-adArIng-
wared-00: = [Thul Wared-C60-
nbiun) ndin0-49auu09: = [Tl 1ndino-103uu02-

(5072 15915) N 1090018 30v0M0us<womounpy | AHOPEA,

380w, = [t]ieyo wonoe-uonng-perdajes- [~ T
1= [esioaq ppen-suoing-uwwEL:

= [1buwis

ChniopEas ‘0 YouR = (1% HoRO R

1u = [Tlueajooq :pawBiBy-

(191021109 1n0Ae-Buptoop-ayeur1ides) = [Tjuonouny Jajjoiu0d-

{enbun “Auopeas ‘pi} 0 = [TlreY> ‘GI-tEOXOE-

fonbun} (), = [ths

{Auopea) T = [T ‘diN-
{AuOpeal} S15300ME IOV, = [LHeUD 3dAL-8O-
9900030V, = [F]BuLIS :SWVN-CE0-
{onbiun *Auopes: 'pi (ai-C80-anbin-oxew) = [Tluonouny ‘qI-CEO-
(5107218U99-FIOVO-FOYHOV-AIZOVD Wou)
a0BpIBI-AUYRPZIAOYD * INDT03101d-TOVD
«sseio

(irlpreoquid ‘preoquid "[T1o51d0 :1991G0)UON93UUOD-3OVO-DIaEp~<UONOUNp>
([r]preoquid ;preoquid '[T119/Go 195/G0)SUONIBLUOI-PEURYTIO-IOF I3 I~UONIUN>
([rhur A reuondo » ‘[Tt :x euondo ‘[t]preoquid -preoquid ‘[T Jasuelsur 198lq0)iqo-preoquId-aU198UL0O-MEIpa) <UL

([xhur A “[run 2 “[T]proquid ‘preoquId)igo-piroquid-auloauLoo-meip—«ogaungs MUY

i :1g0-01198uU03- [
= [Tt fao-twoy-190u00-

= [Tlueal00q :p10aUL0D-
0, = (1111 :ZLNdLNOINIT-

fonbun}

T = [Thul dIN-

{Auopeal} S153COMONYEY 3OV, = [T1eud :3dAL-r80-
+1931G0-¥30v0. = [1]Bus :FNVN-r80-

{onbiun *Auopeas ‘pi (I-rg0-anbiun-axely) = [TJuonouny QI-ta0-

«aoya»

11— whiou: =

= 5 oo

= [Tt o
oomai 1} Sowamor
fombyun) w'an = [T10UMS yec-aBeuw-

10/00:

o = [T o
{p1} 0 = [T}eYD :QI-MOANIM-AVTdSIa-

T = [Tl GON-

{AuopEai} T = [Thul “diN-

{AuOPEl S10ICEOXOE 0O, = [THeUD ‘FAAL-E0-
11991q0-¥30V0., = [T]BulIS ‘IWYN-C8O~

{enbun 'Auopea: 'pi} (QI-cg0-enbiun-aew) = [tluonouny :aI-CE0-

(SI0JEIRUBD-YIOVO-FOVNOV-AIZOVD Wok)

«agepO»

141

Appendix 2.3 CACE4 Manipulators, #2 of a UML (2.x) Class Diagram

([rlpreoquid ‘preoquid ‘[rJaouersur ”
([r}reyo :sninoea™yamm (rjbumns :ap ouesul
]
=
“[rlpreoquid
(i iy ‘s gpon [A [z x tlproqud
([Tlpreoquid ‘preogquid ‘[Tjeoueisur :2oueIsU)iNS-anais+ E(swwuﬁvzinﬁaﬁ..:v.
(oo ssnmoreoyoupm [t aptropum [rlooueisu = xis_é._q_av_ﬁ%_z;
([rhur 2y6r2y ‘[rhur yipu ‘[t :A [t :x | [
(@l
B ([T]preoquid ;preoquid ‘[rjaouersur indi >
([rkreys :sinoa™youm ‘[rjuns :ap-mopum ‘[rleoueisur cl 5 2
{onbuun “Auopea: Pl (qI-fa0-enbun-aye) = (Tluonouny ‘I-rE0-
iﬁ:aiz\muﬁuus_ué AIZOVO wos)
 essep>
{AuoPeal} SHOLVINAINVIN 3A3IS HLVIW 30V |
193IG0-¥30VO. -
{onbun *Auopea: ‘pi (ar(80-anbu-aye
(SIORIMAUEN-730V0- OVHOVd-AIZOVD Wos)
20BUAUIBUYIPIIAYD : INDDNIS-HLVIFIOVD T
esseps
(e oo ouun 11wt g [osuersu o0
(aaueisus 13900 feuondos “[Tjpreoquid for
" T ([rhur 2y6ray ‘[rhus yipm ‘[T :A ‘[T :x ‘[Jeoveisur 303iq0 ?.!a:s
{6moPES) SO NN U Z0x (St sy oo oo ety o
{anbun ‘Auopeal ‘pj (a-CEO-anbi-3 [rluosouny :QI-C80-
(siomIndUEN-yIOVI-3OVHOVA-AIZOVD Wow) s
S0RIBIUIUYAP:IAYD | IND-IOREINAIUBWAIN T30V 0= [thu sﬁ>ﬁxuv¢ =
seion AV

= 0—~

Oheydsip-cuonaunp

([Tlproquid .ES%H ‘[T]eoueisul indi

w@e § ndi B omdsr 0as 'SyEIop e 103)]

(e iy “[chun gpn “[5hun A {5 x [rJoowersun 390iq0 ‘rjpreoquid ch soBpiaiur-auyap:IdYD
([rJoouersur «oiew»
(sBreyu 3sarp ‘[tjaoueisur w...!E;ﬁ.EEINi_EZEs_i
0 = [thur xepuryreuw-
{Auopeai}

{Auopeai} SHOLVINAINYIN HLVIN 30\

199G0-730V0.

JBuins :IWVN-C80-

{onbun “Auopea: P (qr-Fa0-anblun-ayew) = [Tuonoun; I-re0-

(SomrauI IOV 30VOvE VD o)

sseion

{Auopeai} SHOLVININYW ¥3¥31SNTO HLYIW 30
.199g0-¥30V0.
{fonbun *Auopea: pi (rra0-anbun e

CemraI 30N 3PV A0V woi)

«ssejor

T

{onbun Auopes: i (arCa0-snbuTSYew

[rkonoum arteo-

(SI0112USD-YIOVD-FOVHOVA-AIFOVO o)
‘20BL3IUI-AUYAP:IOVD | IND193/01d-30VD

wssep»

142

Appendix 2.4 CACE4 Miscellaneous objects in a UML (2.x) Class Diagram

([zhsi wep-furys
[z erep-Au

([T
(0 = [thst :6d ‘0 = [thsy :8d ‘0 = [thsy :2d ‘0 = [thsy :9d ‘0 = [thsy :5d ‘[ths vd ‘[thsy :ed (thsy 2d ‘[thsy :1d ‘[Thus

(Thsy erep-Aurisy ‘rjoouisy i
(ITJoouersu -aauersu
(LT)sBrenur 1583 ‘[TJoourisul

([rlpreoqud preoqud frjeouessul
([x}reyo :snynojes yoim ‘(TJBuuls api-mopuIm ‘(TJOUBISU! BOUBISU)INS-IOULIOMU IOV MOYS-ISI-UOGIUND
(Irjoreoquid o
([xJoourssus
ek : frjun x {rfpreoquid
(eh B0y e s ‘(e A {rhy o frjooversiy 30900 (rfpreoquid

{Auopeai} SNNOTVD ™ =:
{onbiun) (ar-cg0-anbIUn-BYe!
{Auopeai} ioresuenpiy,

Ut ‘3dA-1n0j09pUNCIBNL-AedSip-Ax-
0= ¥

(519910015217 3OVD-TOVHOV-AIFOVO Wwol)

reyd ‘adAr-Aeidsip-Ax-
1 = [t]uesjoog pt o «sselon

0T = (1l %

((T}eyo “smynafea” yorym [TJBuLIS ofy-MOpUI [TJoOLEISUl 2IURISU)INO~-OTESUEL FOVO-MOYS~UORILINp
([T}eyo :smynajeayonym “[Tj6us ‘aprmopum {rjedtersur
(S6iteyuy 1581 ‘[TJOOUBISU :BOUBISU)RIEISUFOZEIU-POYIaUL»

1NdLNO-SNVAIL-

{onbiun *Auopeas P} o

{anbuun} (),]
 tawor
(Auopeal) SHINHO-NI3OVO.
[qo-IN9-18uLoju-3DVO. {anbiun
{enbuun 'Auopeas 'pi} (-rE0-anbiN-aYelw) =
(S50I00 1501 ¥ 30V0TOVIOVG-NTOV o)
SIS NN 396 (AuOPeal) SHOLVISNYVHL 30
193100730
NW . {onbiun "Ajuopeas ‘pi} (qI-(O-eNbIUN-aXeW) = [T]uonouny QI-CE0-
N (5109100-1521-p IOVO-FOVHOVE-AIZOVO WoL)
ORI OULOD 1AV | NS IORISURI-T0VD
{51 71INdin0 Js1] 7T-IndUl ‘9OUBISUI -99UBISU] “BIUEISUI PIEOQUIG)IEULIOIIMEID—<UORIUNE «ssejo»
(PreoquId pIEOqUIC *90UBISUI :2OUEISUBLLIO-UONEINI[EI U0y
(BRI 151 ‘SOUEISUL)SMaIN-BXB-DIBHBIUIMOYS~POYIALL
(BRI 1581 ‘SOUEISU)RIUEISUIOZBRIL-POYIOLL T
) (rpreogud preogud (119910 199140)ND-1055900.0 FovC Moy R
08 02,08 05 o 0% 07 0%
. p
®1987877 B —" T .
1 = [T]uea]00q d-pieA-suoNNg-Uejurew-
{=UOEIUAWNI0p SHOMAST] 995 'S|IE1op LonEIuBWaIdW 2 103)
i (Somialog SOV 3OOV AITOVD Wol)
(TSRS
o
{enbiun 'Auopea: '
1 = [thu azispExd- {onbun)
SSOMO-SIY-GZMOHS. = [TD ‘AL AVIUSIQ-AX.CEO- areaoxos-
) -
(Auopeail STV S0, {AuOPeal) SHOSSIO0MA™TOVO. T
(2nbiun 'pi} (aI-cEO-anbiun-axew) \ I’
By R I S {onbuun ‘Auopea: i) (ar-FRC-anbM oY
- - . - 108lq0-1081)c1231g0-preOqUIC-12A0 IdEI-<pOLTAW»
(S50I00 1501 7 30V0TOVPIOVG- ATV o) DTS 203 SSVIOVA- ARV L 10 ‘preOQUIYI0-1901 e conun
INS-1AULIOUI-IDVD: IDVHOV-AIFOVD : Jauiojul A xmﬂm_us.
.
T B
(anbiun}

. AFMOANIM-AVTdSIT-

([Tlpre0quid :pi2oquid (1112140 921G0)UORIBLLOS TOVO-BIalAp—UONALNy> eret-rg0;
(frjpre0qud preoquid [7}121q0 1901G0)SUORYBLOD PaLIEHO-10} 43D~ <UORIN> wndino-1aauu00: =
([t} :A reuondo {Tjiur :x feuondo {Tjpreoquid :preoquid ‘(T jeouelsur :19aigo)lgo-preoquid-aulIBULOI-MEIPBI~<«<LONIUN "
([Thur :A [}t :x ‘Tjpreoquid :preoquid)iqo-preoquId-BUIFISULO-MBID~«LOROUNG> {onbuun)
+ | {enbun}
7
T
0.
{anbun) (), =
e {930 = [t ‘ar-MOaN
{fuopea} $103r80MONYY 30VO. = [T}ey9 :3dAL-C80-
14991q0-¥30VD,, = [T]BUIS IWYN-CEO- =
{anbuin 'Auopeas 'pi} (aI-ra0-anbiun-axew) = [tjuonoun; ar-ra0- {fuopeai} mbmamxg 30
19000030
o Fsma__mu&wu«umu,}u«uéwu.«u wouy) L {anbuin 'Auopeas 'pi} (aI-ra0-anbiun-axew) = [tjuonoun; ar-ra0-
e . presipend o ! 191q0-preoquId-uMEIp:IIdY? * qo-preoquId-10a1
<azepan»

143

Appendix 2.5 Class diagram of all CACE4-Generators objects #1

https://cloudstor.aarnet.edu.au/plus/index.php/apps/files ?dir=%2FCACE4%20UML%?20diagrams

144

Appendix 2.6 Class diagram of all CACE4-Generators objects #2

https://cloudstor.aarnet.edu.au/plus/index.php/apps/files ?dir=%2FCACE4%20UML%?20diagrams

145

Appendix 3: CACE4 Reference Manual

CACE4 REFERENCE MANUAL, Version 0.0.35 - July 7th, 2008 - June 28th, 2016.

Reference Manual text: Copyright (c) 2016, Author: Michf&l Koenders.
CACE4 program design: Copyright (c) 1992 - 2016, (MK).
Parts of the original coding was done in MCL 2.0 - 4.x And later adapted for LispWork.
Copyright (c) 1987 - 2005, (MK).

Lisp programming code: Copyright (c) 1992 - 2016, (MK).
Lisp programming code in LispWork Personal Edition 5.x/6.x: Copyright (c) 2007 - 2016, (MK).
After 01-11-2012: LispWorks 6.1 Professional Edition.

01-06-2015: LispWorks 7.x Professional Edition.
Additional code: Copyright (c) 1987--2008/2016 LispWorks Ltd. All rights reserved.

Copyright (c) 1990 This program contains software written by Mark Watson (ART2-
module)
2008 EMALGO Barry Fishman & Pascal Bourguignon

Email: michelk@wxs.nl - URL: http://home.planet.nl/~michelk

Change History: 070708 - started this reference.

0.0.01 080708 - started the chapters.
0.0.02 100708 - added text chapters 1, 2 & 3.
0.0.03 110708 - put all the text in a separate .txt file,

and changed the overall Layout.
+ several corrections in the text.

0.0.04 170708 - added text chapter 2 & 3 and started the Index.

0.0.05 060808 - added text chapter 2. + some indexing.

0.0.06 130808 - added text chapter 2. + lots of indexing.

0.0.07 150808 - added text chapter 1. + some indexing.

0.0.08 220808 - added text chapter 1. + - HISTORY OF CAC.

0.0.09 160309 - changed the header.

0.0.10 170309 - changed the name of the app into CACE4.

0.0.11 210309 - added text chapter 3 & 4 & the Index.

0.0.12 270709 - added text chapter 3 & 4 & the Index.

0.0.13 120412 - updated all dates and corrected some spelling mismatch.

0.0.14 140612 - added text chapter 3.

0.0.15 040812 - added text chapter 5.

0.0.16 270912 - added text chapter 6 & changed some text in chapter 1 & 3.

0.0.17 090113 - updated dates to 2013.

0.0.18 170113 - added License text.

0.0.19 170513 - changed text chapter 1 and added text chapter 3 & 5 & the
Index.

0.0.20 260513 - added text chapter 3.

0.0.21 250214 - changed text.

0.0.22 230715 - updated dates to 2015.

0.0.23 270715 - adding text.

0.0.24 300715 - changing text: CACE4 COS2 (v01b.02.14.18)

0.0.25 060815 - changing text.

0.0.26 070815 - added text chapter 6. (and changed chapter 6 to chapter 7.)

0.0.27 171115 - added copyright text.

0.0.28 191115 - adding and changing text.

0.0.28 231115 - adding and changing text (chapter 2 & 3).

0.0.29 081215 - adding and changing text (chapter 2 & 3).

0.0.30 091215 - adding and changing text (chapter 2 & 3).

0.0.31 260416 - updated dates to 2016.

0.0.32 020516 - changing text.

0.0.33 020616 - changing text.

0.0.34 060616 - changing text.

0.0.35 280616 - changing text.

REFERENCE MANUAL:

Chapter 1 - INTRODUCTION TO CACE4.

Computer Aided Composition Environment written in ANSI Common
Lisp, (version: LispWorks 7.0.0 (32-bit intel) - Personal edition) + CLOS.

It is a frame work application based on an Object System called:

CACE4 Object System & Modelling Organising Shell (COSMOS2 (v2.0))

So it's an extendable music composition environment where generative processes as fractal,
attractor and chaotic calculations, but also file input

(text, SPEAR and Standard MIDI files)

146

Tendency masks.
Mandelbrot 1.
Mandelbrot 2.
Random Cloud.

3.1.2 - Attractor Generators.
Attractors:
Henon attractor type 1.
Henon attractor type 2.
Rfﬂssler attractor.
Lorenz attractor.

3.1.3 - A.I. Generators.

For now

not available (08-12-15, Michel Koenders).

3.1.4 - File Input Generators
There are for now, 3 types of file who can be used: Text files and Spear partials
text files (NB take care to use the right output file format from Speart— ->
Partials.

3.1.4.1

3.1.4.2

3.1.4.3

- Textfiles.

In the textiles the data news to be order in x.y pairs
(as a type of coordinates),

so they can be plotted in a x-y (2 dimensional) grid.

- Spear partials text file.

Be sure to export the data in Spear in the right format as a partials
text file.

This can be found by export-type.

The Spear data can be viewed in 3 ways: as a spectrum, as a MIDI
(point) translation of the spectrum (partials), and as a MIDI (line)
translation + possibility of changing

the duration by multiplying with a factor as well.

- Standard MIDI file.

3.2 - The Manipulators objects [box-object]
A.I. Manipulator - Machine learning - Mathematics Manipulator - Sorting Manipulator.

- Manipulators:

A.I.: ART2 (Adaptive Resonance Theory 2,
Neural Network).

Machine Learning/MIR: k-Means. (Hierarchical Cluster Techniques)
Expectation Maximization. (HCT)

Mathematical manipulators: Correlator.
CLUS: Clusterer.
Disturber (x-y Disturbance).
Scaler.
STAM: STAtistical Manipulation.
STAPS: STAtistical Property Sieve.

Data manipulators: Merger.
Pruner.
Sorter.
Splitter.

3.3 - The Translator object [box-object]
Add a MIDI-Translator.
This translation unit translates any input to MIDI note format.

- Quantizing
Quantize the

Translator output.

3.4 - The Informer/Viewer object [box-object]
Add Informer/Viewer and attach it to any other CACE4 Generator, Manipulator

and Informer

Object.

3.5 - Designing a strategy for connecting the objects.

Setting up a

strategy to reach your goal is the core of the use of CACE4. It really

depends on the results looking for, and of the complexity of the problem you want to

tackle.

Take your time and experiment with the order of the objects. Scaling it to the right

proportions,

can help as well. Also deleting certain items in the data stream

(e.g. x=x+1 values) can clean up the results as well. This process is called - data

massaging,

147

Chapter 2

After starting
In the project

Chapter 3

are available and can be used to generate a sequence of numerical output.
Manipulation in the area of statistics, A.I. (ART2) and several (M)IR modules
(EM and k-means)

are available for processing the sequences.

And at the end of all processing the sequences are mapped to obtain

musical material which output can be directed to a Standard MIDI File.

- HISTORY OF CAC(E).

CAC(E) started somewhere in the beginning of 1992.

At the end of the summer of 1994 an early version of CAC II was ready for use.

Spear & Shield (piano + computer, Max+ISPW - 1994) was the first

composition (created during my stay at the Centrum fur Kunst und Medientechnologie
(ZKM, Centre for Art and Mediatechnology, Karlsruhe Germany) which was composed in the
early version of the CAC(E) II environment.

- Scope (2016): percussion and computer is the latest in a long row of algorithmical
compositions

- STARTING A CACE PROJECT.

the application a blank CAE4: Project window and a history window will present itself.
window we can see, on the left side of the window a list of
available buttons:

- <Add Processor box> [button]
Adding a Processor object at the right side of the CACE4 - Project window and
start working with it.

- <Add Score box> [button]
Adding a Score object at the Project window. (NB This option should only be used
- for the moment - after a Translator box has send the output to the score object.
(for details take a look at the score box object). So this should be done at the
final stages of the project.

- <Move-Edit> [button] select for editing (by double clicking) or moving around (click
and drag) of the selected Project Processor box or the Score box.
- <Connect> [button] can be used to connect several object boxes.
(NB for now do not connect the Project Processor to the Score box).
- <Disconnect> [button] select this one and youl'COre able to disconnect the selected
box-object.
from the other box-objects.
- <Delete> [button] select it for deleting the selected box object.

- <UnLock/Lock> [button] Lock or Unlock the window box display and the action on
the box-objects.

IMPORTANT: First select an action button (left hand side window) then a (Black) Processor
box-object (left down side window).

You need at least one project object and (later) one score object in your project window.
You can do so by using <Add Processor box> [button].

(And use later: <add Score box> [button].

By making all the connections in the processor box-object the created data after
translation by a Translator box is available to the connected Score-box-object.
You can make use of several Processor-objects connected to one Score-box-object.

=> NB. Only one Score-box-object is allowed in the project - for now - (020616 mk).

-> although it is possible to have several Project Processor boxes in your CACE4
Project, it['COs for now only possible to use one Score box-object).

Now you can also edit the object, by selecting the - <Move-Edit> [button] -

on the left side of the project-window and click on the Processor-object [box-object].

- WORKING WITH A CACE4 PROCESSOR OBJECT.

Keywords:

SELECTING and CONNECTING the different CACE4 Processor objects.
After adding one of the 4 basic building blocks:
GENERATORS, MANIPULATOR(S), TRANSLATOR(S) or INFORMER/Viewer(s), start

148

working with them.

After creating an empty Process Object (How? See Chapter 2),
double click and it will open.

In the newly created Process window we can see, on the left side of the window (bottom) a
list of available buttons (NB they share the same functionality with the project window):

- <Move-Edit> [button] Select for editing (by double clicking) or moving around
(click and drag)of the selected CACE4 Processor Object-box.

- <Connect> [button] Select can be used to connect several object boxes. Always connect
the last one with the next to create a connection.
When a connection
has been established a black arrow appears between the two now
connected objects. Indicating the direction (of data) of the CACE4
Object chain.

- <Disconnect> [button] Select this one and youl'GOre able to disconnect the selected
box-object from the other box-objects.

- <Delete> [button] Select for deleting one of the selected CACE4 Processor Objects.

- <UnLock/Lock> [button] Lock or Unlock the window box display and the action on the
box-objects.

Now make a selection from one of the following Generator box-objects:

- <Fractals> [drop-down menu] -> 3.1.1 - Fractal Generators.

- <Attractors> [drop-down menu] -> 3.1.2 - Attractor Generators.

- <A.I.> [drop-down menu] -> 3.1.3 - for now no entries (MK, 09-12-15).
- <Files> [drop-down menu] -> 3.1.4 - File Input Generators

Now we select one of the Manipulator box-objects and attach it to the previous selected
Generator box-object.

Add a Manipulator box-object:

- <A.I.> [drop-down menu]

- <Machine Learning/M.I.R> [drop-down menu]
- <Mathematical Manipulator> [drop-down menu]

- <Data Manipulator> [drop-down menu]

After adding as a last object in the chain a CACE4 Scaler Object for scaling the data to
MIDI ranges

Add a Translator box-object:

- <(MIDI) Translator.> [drop-down menu]

Add a Informer box-object:
- <informer-viewer.> [drop-down menu]

- The Generator objects [box-object]
Fractal Generators - Attractor Generators - A.I. Generators - File Input Generators.

3.1.1 - Fractal Generators.
Fractals:
Automaton.
Bifurcation diagram.
Mira.
Julia.
Iterated Function System (IFS).
Brownian movements.
Linear Congruential method.
Chaos on Torus.

149

and has to be done with great care otherwise we will influence the results as

calculated.

Take also time when entering parameter values from the objects as well. The results will
differ. For showing/plotting
result and to do some (only visual output) statistics with it. This really helps in
understanding the results. Remember that not all our Information Retrieval (k-means
I. (ART2) objects can solve the problems, because they are not well

suited to the problem.

and EM) or A.

Chapter 4 - WORKING WITH THE CACE4 SCORE OBJECT.

- Collecting data in the Score object.
After sending data from the Translator to the Score it appears in the top, inside a
red box. Select it and Drag it downward to the Tracks and drop it on Track #1.

- Save score to Standard MIDI file.

- (Save score to MusicXML file).

Chapter 5 - IMPLEMENTED CACE4 OBJECTS AND ALGORITHMS.

List of all 36 objects (and algorithms) implemented so far; date: 27th of July 2015.

CACE4 PROCESSOR OBJECTS:

- Generators:

- Manipulators:

Fractals:

Attractors:

A.T.:

Files (input):

Machine Learning/MIR:

Mathematical manipulators:

Data manipulators:

Automaton.

Bifurcation diagram.

Mira.

Julia.

Iterated Function System (IFS).
Brownian movements.

Linear Congruential method.
Chaos on Torus.

Tendency masks.

Mandelbrot 1.

Mandelbrot 2.

(Random) Cloud.

Henon type 1.

Henon type 2.
RH|ssler attractor.
Lorenz attractor.

Text files.
Spear partials text file.
Standard MIDI file.

ART2 (Adaptive Resonance Theory 2, Neural
Network) .

k-Means. (Hierarchical Cluster Technigques)
EM (Expectation Maximization). (HCT)

Correlator.

CLUS: Clusterer.

Disturber (x-y Disturbance).
Scaler.

STAM: STAtistical Manipulation.
STAPS: STAtistical Property Sieve.

Merger.
Pruner.
Sorter.
Splitter.

150

- Translators: MIDI Translator.

- Informers: Informer/Viewer.

CACE4 PROJECT OBJECTS.
- Processor Object.
The Processor objects holds all CACE4 Processor Objects.
See above objects for details about using thoseCACE4 Processor Objects.

- Score Object.
Save single track as a std MIDI file.

Chapter 6 - Preference Panel - THE CACE4 APPLICATION.
- Use of the CACE4 preferences panel.

- CACE processes:
CACE4 COS&MOS2 (v2.0) verbose.
CACE4 INPUT verbose.
CACE4 OUTPUT verbose.
CACE4 PROC verbose.
CACE4 verbose.

- Numerical Input/Output columns display range.
The main purpose for this preference is to be used to speedup initial calculations.

Chapter 7 - ABOUT COS - THE CACE4 OBJECT SYSTEM.
In the preference panel of CACE4 you can turn COS verbose on/off.
CACE4 COS2 (v01b.02.14.18) : set-input-link

if object type

if object type
inputs!).

if object type

if object type

if object type

if object type

= GENERATOR_OBJ then 0 connections are possible. (Generators have no inputs!).
= FILE_GENERATOR_OBJ then 0 connections are possible. (File Generators have no

MATH_MANIPULATOR_OBJ then 1 input connection is possible.
AI_MANIPULATOR_OBJ then 1 input connection is possible.

DATA MANIPULATOR OBJ then 1 or more input connections are possible.
ML_MIR_MANIPULATOR OBJ then 1 input connection is possible.

if object type TRANSLATOR_OBJ then 1 input connection is possible.

if object type INFORMER_OBJ then 1 input connection is possible.

NB. 0,1 or multiple input connections can exist.

CACE4 COS2 (v01b.02.14.18): set-output-link

if object type
if object type
if object type
if object type
if object type
if object type

= GENERATOR_OBJ then 1 or more output connections are possible.
FILE_GENERATOR OBJ then 1 or more output connections are possible.
MATH_MANIPULATOR_OBJ then 1 or more output connection are possible.
AI_MANIPULATOR_OBJ then 1 or more output connections are possible.

DATA MANIPULATOR_OBJ then 1 or more output connections are possible.
ML_MIR_MANIPULATOR OBJ then 1 or more output connections are possible.

if object type TRANSLATOR_OBJ then no connection is possible. (Output goes to ScoreObj!).
if object type INFORMER_OBJ then no connection is possible. (Informers have no outputs!).
NB. All outputs are multiple connections.

Index Chapters
A.
Add Processor object [button] 2
Add Score object [button] 2
A.I. 1, 3, 5

151

Attractors 3.1.2, 5
Automaton. 3.1.1, 5
Bifurcation diagram. 3.1.1, 5
Brownian movements. 3.1.1, 5
Chaos on Torus. 3.1.1, 5
Connect objects [button] 2

Ccos (v1.0) 7
Delete object [button] 2

Disconnect objects [button] 2

Files. 5

Fractals. 3.1.1, 5
Generators [box-object] 3.1, 5
Henon attractors (type 1 & 2). 3.1.2, 5
Hierarchical Cluster Techniques. 5

HISTORY OF CACE. 1
Informer/Viewer [box-object] 3.4
INTRODUCTION TO CACE4. 1
Iterated Function System (IFS). 3.1.1, 5
Julia fractal. 3.1.1, 5
Linear Congruential method. 3.1.1, 5
Lorenz attractor. 3.1.2, 5
Mandelbrot fractals (type 1 & 2) 3.1.1, 5
Manipulators [box-object] 3.2, 5

Mira fractal. 3.1.1, 5

Move object [button] 2

Open object [button] 2

Preference Panel. 6

Processor object [box-object] 2, 3, 5
Rkﬂssler attractor. 3.1.2, 5
Spear & Shield. 1
Spear partials text file (input). [box-object] 5
Standard MIDI File. (output). 1
STARTING A CACE PROJECT. 2
Tendency masks. 3.1.1, 5
Text file (input). [box-object] 5
Translators [box-object] 3.3, 5
UnLock / Lock [button] 2

152

Viewers [box-object] -> see Informer/Viewer 2

WORKING WITH THE CACE PROCESSOR OBJECT. 4

LICENSE

LICENSE.

Copyright (c) 2016, Miche¢l Koenders All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are

met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

*

Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

*

Neither the name of the Mich¢l Koenders nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
I'cyas ISFQ@ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CACE4 - Copyright (c) Michél Koenders, 2013 - 2016 - michelk@wxs.nl

153

Appendix 4: CACE4 MIDI and Audio Reference Table

All CACE4 timing MIDI Notes calculations are based on: tempo = (quarter note) MM 120,
Time-signature: 4/4. All can be changed in the TRANSLATOR-OBJ.

period ms. remarks

Note name MIDI Number frequency Hz.

C-1 0 8.176 122.32
C#-1/Db-1 1 8.662 115.44
D-1 2 9.177 108.96
D#-1/Eb-1 3 9.72275 102.84
E-1 4 10.30075 97.08
F-1 5 10.9135 91.64
F#-1/Gb-1 6 11.56225 86.48
G-1 7 12.24975 81.64
G#-1/Ab-1 8 12.97825 77.04
A-1 9 13.75 72.72
A#-1/Bb-1 10 14.5675 68.64
B-1 11 15.434 64.8
Co 12 16.352 61.16
C#0 / Db0 13 17.324 57.72
DO 14 18.354 54.42
E0 16 20.6015 48.54
FO 17 21.827 45.82
F#0 / Gb0 18 23.1245 43.24
GO 19 24.4995 40.82
G#0 / AbO 20 25.9565 38.52
A0 21 275 36.36
A#0 / Bb0 22 29.135 3432
BO 23 30.868 324
C1 24 32.703 30.58
C#1 /Dbl 25 34.648 28.86
D1 26 36.708 27.24
D#1/Ebl 27 38.891 25.71
El 28 41.203 24.27
F1 29 43.654 2291
F#1/Gbl 30 46.249 21.62
Gl 31 48.999 20.41
G#1/ Abl 32 51.913 19.26
Al 33 55 18.18
A#1/Bbl 34 58.27 17.16
Bl 35 61.735 16.2
C2 36 65.406 15.29
C#2/Db2 37 69.296 14.29
D2 38 73.416 13.62
D#2 / Eb2 39 77.782 12.86
E2 40 82.407 12.13
F2 41 87.307 11.45
F#2 / Gb2 42 92.499 10.81
G2 43 97.999 10.2
G#2 / Ab2 44 103.83 9.631
A2 45 110 9.091
A#2 / Bb2 46 116.54 8.581
B2 47 123.47 8.099
C3 48 130.81 7.645
C#3/Db3 49 138.59 7.216
D3 50 146.83 6.811
D#3 / Eb3 51 155.56 6.428
E3 52 164.81 6.068
F3 53 174.61 5.727
F#3 / Gb3 54 185 5.405
G3 55 196 5.102
G#3 / Ab3 56 207.65 4.816
A3 57 220 4.545
A#3 / Bb3 58 233.08 4.29
B3 59 246.94 4.05
C4 60 261.63 3.822
C#4 / Db4 61 277.18 3.608
D4 62 293.67 3.405
D#4 / Eb4 63 311.13 3214
E4 64 329.63 3.034
F4 65 349.23 2.863
F#4 / Gb4 66 369.99 2.703
G4 67 392 2.551
G#4 / Ab4 68 4153 2.408
A4 69 440 2273

Central C

a=440

Note durations

1/128

1/128 dot

1/64

1/64 dot

1/32

1/32 dot

1/16 dot 1

1/8

1/8 dot

1/4

1/4 dot

1/2

1/2 dot

1

1 dot

B w

in 1/1000 sec

15.625
19.53125
23.4375
27.34375
31.25
39.0625
46.875
54.6875
62.5
78.125
93.75
109.375
156.25
87.5
218.75
250
3125
375
4375
500

625

750

875
1000
1250
1500
1750
2000
2500
3000
3500
4000
5000
6000
8000
10000

msecs

15.6
19.5
234
273
313
39.1
46.9
54.7
62.5
78.1
93.8
109.4
156.3
187.5
218.8
250
312.5
375
4375
500
625
750
875
1000
1250
1500
1750
2000
2500
3000
3500
4000
5000
6000
8000
10000 Maximum!

CACE4 dB's, Amplitudes to MIDI Volumes/Velocity's.

00dB =10 =127
-6.0dB =0.5 =121
-12.0dB =0.25 =115
-18.0dB =0.125 =109
-240dB =0.625 =103
-30.0dB =0.03125 =97
-36.0dB =0.015625 =91
-42.0dB =0.0078125 =85
-48.0 dB = 0.00390625 =79
-54.0dB =0.001953125 =73
-60.0 dB = 0.0009765625 =67

-66.0 dB = 0.00048828125 =61
-72.0 dB =0.000244140625 =55
-78.0dB =0.0001220703125 =49
-84.0dB =0.00006103515625 =43
-90.0 dB =0.00003051757813 =37
-96.0 dB = 0.00001525878907 =31
-102.0 dB =0.00000762939454 =25
-108.0 dB =0.00000381469727 =19
-114.0 dB =0.00000190734864 = 13
-120.0 dB =0.00000095367432 =7
-126.0 dB = 0.00000047683716 =1
-132.0 dB =0.00000023841858 =0
-138.0 dB =0.00000011920929 =0
-144.0 dB = 0.00000005960465 =0

154

Note name MIDI Number

A#4 / Bb4
B4
Cs
C#5 / DbS
D5
D#5 / Eb5
E5
F5
F#5/ Gbs
G5
G#5 / AbS
A5
A#5/BbS
BS
Cc6
C#6 / Db6
D6
D#6 / Eb6
E6
F6
F#6 / Gb6
Go6
G#6 / Ab6
A6
A#6 / Bb6
B6
c7
C#7/Db7
D7
D#7 / Eb7
E7
F7
F#7/Gb7
G7
G#7/ Ab7
A7
A#7/Bb7
B7
C8
C#8 / Db8
D8
D#8 / Eb8
E8
F8
F#8 / Gb8
G8
G#8 / Ab8
A8
A#8 /Bb8
B8
c9
C#9 / Db9
D9
D#9 / Eb9
E9
F9
F#9 / Gb9
G9
G#9/ Ab9
A9

300513 mk

frequency Hz.

period ms. remarks

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

466.16
493.88
523.25
554.37
587.33
622.25
659.26
698.46
739.99
783.99
830.61
880
932.33
987.77
1046.5
1108.7
1174.7
1244.5
1318.5
1396.9
1480
1568
1661.2
1760
1864.7
1975.5
2093
2217.5
23493
2489
2637
2793
2960
3136
33224
3520
37293
3951.1
4186
4435
4698.6
4978
5274
5586
5920
6272
6644.8
7040
7458.6
7902.2
8372
8870
9397.2
9956
10548
11172
11840
12544
13289.6
14080

2.145
2.025
1.91
1.804
1.703
1.607
1.517
1.432
1.351
1.276
1.204
1.136
1.073
1.012
0.9556
0.902
0.8513
0.8034
0.7584
0.7159
0.6757
0.6378
0.602
0.5682
0.5363
0.5062
0.4778
0.451
0.4257
0.4018
0.3792
0.358
0.3378
0.3189
0.301
0.2841
0.2681
0.2531
0.2389
0.2255
0.21285
0.2009
0.1896
0.179
0.1689
0.15945
0.1505
0.14205
0.13405
0.12655
0.11945
0.11275
0.106425
0.10045
0.0948
0.0895
0.08445
0.079725
0.07525
0.071025

155

